机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维
PCA对手写数字数据集的降维
1. 导入需要的模块和库
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
2. 导入数据,探索数据
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3 Preprocessing\digit
recognizor.csv") X = data.iloc[:,1:]
y = data.iloc[:,0] X.shape
3. 画累计方差贡献率曲线,找最佳降维后维度的范围
pca_line = PCA().fit(X)
plt.figure(figsize=[20,5])
plt.plot(np.cumsum(pca_line.explained_variance_ratio_))
plt.xlabel("number of components after dimension reduction")
plt.ylabel("cumulative explained variance ratio")
plt.show()
4. 降维后维度的学习曲线,继续缩小最佳维度的范围
#======【TIME WARNING:2mins 30s】======# score = []
for i in range(1,101,10):
X_dr = PCA(i).fit_transform(X)
once = cross_val_score(RFC(n_estimators=10,random_state=0)
,X_dr,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,101,10),score)
plt.show()
5. 细化学习曲线,找出降维后的最佳维度
#======【TIME WARNING:2mins 30s】======# score = []
for i in range(10,25):
X_dr = PCA(i).fit_transform(X)
once = cross_val_score(RFC(n_estimators=10,random_state=0),X_dr,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10,25),score)
plt.show()
6. 导入找出的最佳维度进行降维,查看模型效果
X_dr = PCA(23).fit_transform(X) #======【TIME WARNING:1mins 30s】======#
cross_val_score(RFC(n_estimators=100,random_state=0),X_dr,y,cv=5).mean()
模型效果还好,跑出了94.49%的水平,但还是没有我们使用嵌入法特征选择过后的96%高,有没有什么办法能够提高模型的表现呢?
7. 突发奇想,特征数量已经不足原来的3%,换模型怎么样?
在之前的建模过程中,因为计算量太大,所以我们一直使用随机森林,但事实上,我们知道KNN的效果比随机森林
更好,KNN在未调参的状况下已经达到96%的准确率,而随机森林在未调参前只能达到93%,这是模型本身的限制
带来的,这个数据使用KNN效果就是会更好。现在我们的特征数量已经降到不足原来的3%,可以使用KNN了吗?
from sklearn.neighbors import KNeighborsClassifier as KNN
cross_val_score(KNN(),X_dr,y,cv=5).mean()
8. KNN的k值学习曲线
#======【TIME WARNING: 】======# score = []
for i in range(10):
X_dr = PCA(23).fit_transform(X)
once = cross_val_score(KNN(i+1),X_dr,y,cv=5).mean()
score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10),score)
plt.show()
9. 定下超参数后,模型效果如何,模型运行时间如何?
cross_val_score(KNN(4),X_dr,y,cv=5).mean() #=======【TIME WARNING: 3mins】======#
%%timeit
cross_val_score(KNN(4),X_dr,y,cv=5).mean()
可以发现,原本785列的特征被我们缩减到23列之后,用KNN跑出了目前位置这个数据集上最好的结果。再进行更
细致的调整,我们也许可以将KNN的效果调整到98%以上。PCA为我们提供了无限的可能,终于不用再因为数据量
太庞大而被迫选择更加复杂的模型了!
机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维的更多相关文章
- 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法
Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- 机器学习实战基础(十九):sklearn中数据集
sklearn提供的自带的数据集 sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在 ...
- python机器学习实战(二)
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇noteboo ...
- Bootstrap<基础二十七> 多媒体对象(Media Object)
Bootstrap 中的多媒体对象(Media Object).这些抽象的对象样式用于创建各种类型的组件(比如:博客评论),我们可以在组件中使用图文混排,图像可以左对齐或者右对齐.媒体对象可以用更少的 ...
- (转载)Android项目实战(二十七):数据交互(信息编辑)填写总结
Android项目实战(二十七):数据交互(信息编辑)填写总结 前言: 项目中必定用到的数据填写需求.比如修改用户名的文字编辑对话框,修改生日的日期选择对话框等等.现总结一下,方便以后使用. 注: ...
- sklearn中的多项式回归算法
sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
随机推荐
- 动作函数-web_submit_data
web_submit_data("login.pl", "Action=http://127.0.0.1:1080/WebTours/login.pl", &q ...
- root和sudo
root用户是系统中唯一的超级管理员,它具有等同于操作系统的权限.一些需要root权限的应用,譬如广告阻挡,是需要root权限的.可问题在于root比windows的系统管理员的能力更大,足以把整个系 ...
- Cookie 和 Session 关系详解
什么是 Cookie 和 Session ? 什么是 Cookie HTTP Cookie(也叫 Web Cookie或浏览器 Cookie)是服务器发送到用户浏览器并保存在本地的一小块数据,它会在 ...
- 04 . Jenkins定制主题和设置项目构建信息输出颜色
Jenkins thems自动生成定制主题css Jenkins默认界面比较丑,视觉容易疲劳,这时候就需要我们更换一个主题,让我们的Jenkins美观一些. 以下是css主题的地址 http://af ...
- Flutter学习笔记(33)--GestureDetector手势识别
如需转载,请注明出处:Flutter学习笔记(33)--GestureDetector手势识别 这篇随笔主要记录的学习内容是GestureDetector手势识别,内容包括识别单击.双击.长按.组件拖 ...
- 最通俗易懂的RSA加密解密指导
前言 RSA加密算法是一种非对称加密算法,简单来说,就是加密时使用一个钥匙,解密时使用另一个钥匙. 因为加密的钥匙是公开的,所又称公钥,解密的钥匙是不公开的,所以称为私钥. 密钥 关于RSA加密有很多 ...
- 如何运用Linux进行查看tomcat日志
第一步:进入tomcat目录下的logs.cd home /tomcat/logs 第二步:运行并查看日志:tail -f catalina.out 第三步:想终止查看:ctrl +c退出 第四步:比 ...
- python脚本中调用其他脚本
如果只关注脚本中调用他脚本直接看代码30行 PS:该脚本功能有:自动清理目录,创建目录,自动运行脚本,以此提升工作效率 import numpy as np import os from shutil ...
- express高效入门教程(1)
1.hello world 1.1.安装express // 1.进入到自己的项目目录, 我这里是express-demo cd express-demo // 2.初始化项目,生成package.j ...
- 使用onload和setTimeout、setInterval来实现当前的时间
1.在body里面使用onload和在函数中使用setTimeout来实现当前的日期时间不断变化 2.在script中直接是用setInterval实现当前实现的日期时间不断变化 <!DOCTY ...