PCA对手写数字数据集的降维

1. 导入需要的模块和库

from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

2. 导入数据,探索数据

data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3 Preprocessing\digit
recognizor.csv") X = data.iloc[:,1:]
y = data.iloc[:,0] X.shape

3. 画累计方差贡献率曲线,找最佳降维后维度的范围

pca_line = PCA().fit(X)
plt.figure(figsize=[20,5])
plt.plot(np.cumsum(pca_line.explained_variance_ratio_))
plt.xlabel("number of components after dimension reduction")
plt.ylabel("cumulative explained variance ratio")
plt.show()

4. 降维后维度的学习曲线,继续缩小最佳维度的范围

#======【TIME WARNING:2mins 30s】======#

score = []
for i in range(1,101,10):
   X_dr = PCA(i).fit_transform(X)
   once = cross_val_score(RFC(n_estimators=10,random_state=0)
                          ,X_dr,y,cv=5).mean()
   score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,101,10),score)
plt.show()

5. 细化学习曲线,找出降维后的最佳维度

#======【TIME WARNING:2mins 30s】======#

score = []
for i in range(10,25):
   X_dr = PCA(i).fit_transform(X)
   once = cross_val_score(RFC(n_estimators=10,random_state=0),X_dr,y,cv=5).mean()
   score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10,25),score)
plt.show()

6. 导入找出的最佳维度进行降维,查看模型效果

X_dr = PCA(23).fit_transform(X)

#======【TIME WARNING:1mins 30s】======#
cross_val_score(RFC(n_estimators=100,random_state=0),X_dr,y,cv=5).mean()

模型效果还好,跑出了94.49%的水平,但还是没有我们使用嵌入法特征选择过后的96%高,有没有什么办法能够提高模型的表现呢?

7. 突发奇想,特征数量已经不足原来的3%,换模型怎么样?

在之前的建模过程中,因为计算量太大,所以我们一直使用随机森林,但事实上,我们知道KNN的效果比随机森林
更好,KNN在未调参的状况下已经达到96%的准确率,而随机森林在未调参前只能达到93%,这是模型本身的限制
带来的,这个数据使用KNN效果就是会更好。现在我们的特征数量已经降到不足原来的3%,可以使用KNN了吗?

from sklearn.neighbors import KNeighborsClassifier as KNN
cross_val_score(KNN(),X_dr,y,cv=5).mean()

8. KNN的k值学习曲线

#======【TIME WARNING: 】======#

score = []
for i in range(10):
   X_dr = PCA(23).fit_transform(X)
   once = cross_val_score(KNN(i+1),X_dr,y,cv=5).mean()
   score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10),score)
plt.show()

9. 定下超参数后,模型效果如何,模型运行时间如何?

cross_val_score(KNN(4),X_dr,y,cv=5).mean()

#=======【TIME WARNING: 3mins】======#
%%timeit
cross_val_score(KNN(4),X_dr,y,cv=5).mean()

可以发现,原本785列的特征被我们缩减到23列之后,用KNN跑出了目前位置这个数据集上最好的结果。再进行更
细致的调整,我们也许可以将KNN的效果调整到98%以上。PCA为我们提供了无限的可能,终于不用再因为数据量
太庞大而被迫选择更加复杂的模型了!

机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维的更多相关文章

  1. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  2. 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现

    简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...

  3. 机器学习实战基础(十九):sklearn中数据集

    sklearn提供的自带的数据集   sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在 ...

  4. python机器学习实战(二)

    python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇noteboo ...

  5. Bootstrap<基础二十七> 多媒体对象(Media Object)

    Bootstrap 中的多媒体对象(Media Object).这些抽象的对象样式用于创建各种类型的组件(比如:博客评论),我们可以在组件中使用图文混排,图像可以左对齐或者右对齐.媒体对象可以用更少的 ...

  6. (转载)Android项目实战(二十七):数据交互(信息编辑)填写总结

    Android项目实战(二十七):数据交互(信息编辑)填写总结   前言: 项目中必定用到的数据填写需求.比如修改用户名的文字编辑对话框,修改生日的日期选择对话框等等.现总结一下,方便以后使用. 注: ...

  7. sklearn中的多项式回归算法

    sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...

  8. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

  9. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

随机推荐

  1. LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关

    题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...

  2. 读懂操作系统之虚拟内存TLB与缓存(cache)关系篇(四)

    前言 前面我们讲到通过TLB缓存页表加快地址翻译,通过上一节缓存原理的讲解为本节做铺垫引入TLB和缓存的关系,同时我们来完整梳理下从CPU产生虚拟地址最终映射为物理地址获取数据的整个过程是怎样的,若有 ...

  3. Spark GraphX企业运用

    ========== Spark GraphX 概述 ==========1.Spark GraphX是什么?  (1)Spark GraphX 是 Spark 的一个模块,主要用于进行以图为核心的计 ...

  4. C++值元编程

    --永远不要在OJ上使用值元编程,过于简单的没有优势,能有优势的编译错误. 背景 2019年10月,我在学习算法.有一道作业题,输入规模很小,可以用打表法解决.具体方案有以下三种: 运行时预处理,生成 ...

  5. java并发编程系列原理篇--JDK中的通信工具类Semaphore

    前言 java多线程之间进行通信时,JDK主要提供了以下几种通信工具类.主要有Semaphore.CountDownLatch.CyclicBarrier.exchanger.Phaser这几个通讯类 ...

  6. CKA考试个人心得分享

    考试相关准备: 真题:需要的私密: 网络:必须开启VPN,以便能访问国外网络,强烈建议在香港搭建相应FQ: 证件:考试需要出示含有拉丁文(英文)带照片的有效证件,相关有效证件参考(优先建议护照):ht ...

  7. 研为电子6轴运动控制卡win10驱动无法安装问题,解决方法

    研为电子6轴运动控制卡win10驱动无法安装问题,解决方法 研为电子6轴运动控制卡win10驱动无法安装问题,解决方法 iMC3xx2E系列运动控制卡使用手册V1.003 IMCdrv_Ins.exe ...

  8. 尚硅谷 dubbo学习视频

    1 1.搭建zookpeer注册中心 windows下载zooker  需要修改下zoo_sample .cfg为zoo.cnf 然后需要zoo.cnf中数据文件的路径 第五步:把zoo_sample ...

  9. SpringBoot--日期格式化

    1.为了统一转转,可以使用日期格式化类 package com.example.demo.resource; import com.fasterxml.jackson.datatype.jsr310. ...

  10. MongoDB快速入门教程 (3.2)

    3.2.索引 索引是特殊的数据结构,索引存储在一个易于遍历读取的数据集合中,建立索引,通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条 ...