题意:

\(M_i\)为一个\(m*m\)矩阵,已知

\[\begin{aligned}
&M_0=A\\
&M_i=(\prod_{j=c_i}^{i+1}M_j)B
\end{aligned}
\]

问\(M_n\)矩阵,输入包含\(n,m,A,B,c_1\cdots c_n(c_1\leq c_2\cdots \leq c_n)\)。

思路:

因为\(c_1\leq c_2\cdots \leq c_n\),所以我们只需实现一个队列,满足能从队头\(pop\),从队尾\(push\),并且能求队列内乘积。可以通过两个栈实现。

栈\(suf\)保存的是后缀的乘积,\(pre\)保存的是前缀的乘积,那么\(push\)时放到\(pre\)维护前缀积并储存放进去的矩阵,\(pop\)时直接把\(suf\)最前面的后缀弹出即可。如果\(suf\)空了,那么把\(pre\)里的内容暴力变成后缀放到\(suf\)里。可以知道每个矩阵最多进两次栈,复杂度\(O(nm^2)\)。

代码:

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<bitset>
#include<string>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + 5;
const int M = 50 + 5;
const ull seed = 131;
const int INF = 0x3f3f3f3f;
const ll MOD = 1000000007;
struct Mat{
int s[5][5];
void init(){memset(s, 0, sizeof(s));}
};
int n, m, mod;
int ksc(ll a, ll b, ll p){
ll t = a * b - (ll)((long double)a * b / p + 0.5) * p;
t = (t < 0)? t + p : t;
return (int)t;
}
inline Mat mul(Mat a, Mat b){
Mat c;
c.init();
for(int i = 0; i < m; i++){
for(int j = 0; j < m; j++){
for(int k = 0; k < m; k++){
c.s[i][j] = (c.s[i][j] + ksc(a.s[i][k], b.s[k][j], mod)) % mod;
}
}
}
return c;
}
Mat pre[maxn], suf[maxn], a[maxn];
int cnt1, cnt2, c[maxn];
void ins(Mat x){
if(cnt1 == 0) pre[++cnt1] = x;
else{
pre[++cnt1] = x;
pre[cnt1] = mul(pre[cnt1 - 1], x);
}
a[cnt1] = x;
}
void del(){
if(cnt2 == 0){
for(int i = cnt1; i >= 1; i--){
if(cnt2 == 0) suf[++cnt2] = a[i];
else suf[++cnt2] = a[i], suf[cnt2] = mul(suf[cnt2], suf[cnt2 - 1]);
}
cnt1 = 0;
}
cnt2--;
}
int main(){
while(~scanf("%d%d%d", &n, &m, &mod)){
cnt1 = cnt2 = 0;
Mat A, B, ret;
for(int i = 0; i < m; i++){
for(int j = 0; j < m; j++){
scanf("%d", &A.s[i][j]);
}
}
for(int i = 0; i < m; i++){
for(int j = 0; j < m; j++){
scanf("%d", &B.s[i][j]);
}
}
for(int i = 1; i <= n; i++) scanf("%d", &c[i]);
int L = 0;
ins(A);
for(int i = 1; i <= n; i++){
while(L < c[i]) del(), L++;
if(cnt1 && cnt2) ret = mul(suf[cnt2], pre[cnt1]);
else if(cnt1) ret = pre[cnt1];
else ret = suf[cnt2];
ret = mul(ret, B);
ins(ret);
}
for(int i = 0; i < m; i++){
for(int j = 0; j < m; j++){
printf("%d%c", ret.s[i][j], j == m - 1? '\n' : ' ');
}
}
}
return 0;
}

Petrozavodsk Winter Training Camp 2017G(栈)题解的更多相关文章

  1. 2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest (5/9)

    2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest B. Forcefield 题意 给你一维平面上n个镜子 ...

  2. 2015 UESTC Winter Training #7【2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest】

    2015 UESTC Winter Training #7 2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest 据 ...

  3. Petrozavodsk Winter Training Camp 2018

    Petrozavodsk Winter Training Camp 2018 Problem A. Mines 题目描述:有\(n\)个炸弹放在\(x\)轴上,第\(i\)个位置为\(p_i\),爆炸 ...

  4. 2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)

    2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest) Problem A. M ...

  5. Gym - 100162G 2012-2013 Petrozavodsk Winter Training Camp G. Lyndon Words 暴力枚举

    题面 题意:如果一个字符串的最小表示法是他自己,他就是一个Lyndon Word. 例如  aabcb 他的循环串有 abcba  bcbaa cbaab baabc 其中字典序最小的是他自己 现在给 ...

  6. Petrozavodsk Winter Training Camp 2016: Moscow SU Trinity Contest

    题目列表 A.ABBA E.Elvis Presley G. Biological Software Utilities J. Burnished Security Updates A.ABBA 题意 ...

  7. 【推导】【数学期望】【冒泡排序】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem C. Earthquake

    题意:两地之间有n条不相交路径,第i条路径由a[i]座桥组成,每座桥有一个损坏概率,让你确定一个对所有桥的检测顺序,使得检测所需的总期望次数最小. 首先,显然检测的时候,是一条路径一条路径地检测,跳跃 ...

  8. 【线段树】【扫描线】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem A. Donut

    题意:平面上n个点,每个点带有一个或正或负的权值,让你在平面上放一个内边长为2l,外边长为2r的正方形框,问你最大能圈出来的权值和是多少? 容易推出,能框到每个点的 框中心 的范围也是一个以该点为中心 ...

  9. 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables

    题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...

随机推荐

  1. 20V,24V转5V,20V,24V转3.3V降压芯片,IC介绍

    常用的20V和24V转5V,3.3V的LDO稳压和DC-DC降压芯片: PW6206系列是一款高精度,高输入电压,低静态电流,高速,低压降线性稳压器具有高纹波抑制.输入电压高达40V,负载电流高达10 ...

  2. 三. SpringCloud服务注册与发现

    1. Eureka 1.1 Eureka理解 什么是服务治理 Spring Cloud封装了Netflix公司开发的Eurkeka模块来实现服务治理 在传统的rpc远程调用框架中,管理每个服务与服务之 ...

  3. Jmeter函数助手大全

    __BeanShell 入参:BeanShell语法的程序语句或者Bean Shell脚本文件 示例: ${__BeanShell(123*456,)}:返回56088: ${__BeanShell( ...

  4. jmeter-登录获取cookie后参数化,或手动添加cookie, 再进行并发测试

    以下情况其实并不适用于直接登录可以获取cookie情况,直接可以登录成功,直接添加cookie管理,cookie可以直接使用用于以下请求操作. 如果登录一次后,后续许多操作,可以将cookie管理器放 ...

  5. Linux下运行java报错:Error: Could not find or load main class SocketIOPropertites

    [root@node01 testfileio]# javac SocketIOPropertites.java && java Soc ketIOPropertitesError: ...

  6. js12种应该注意的地方

    1. == Javascript有两组相等运算符,一组是==和!=,另一组是===和!==.前者只比较值的相等,后者除了值以外,还比较类型是否相同. 请尽量不要使用前一组,永远只使用===和!==.因 ...

  7. var、let、const之间的区别

    var声明变量可以重复声明,而let不可以重复声明var是不受限于块级的,而let是受限于块级var会与window相映射(会挂一个属性),而let不与window相映射var可以在声明的上面访问变量 ...

  8. FlightGear 从输出所省略的额外重寻址溢出

    2020-12-27 在龙芯Fedora28上编译 FlightGear 2019.1.1 时遇到 从输出所省略的额外重寻址溢出 错误,错误信息如下: [ 98%] Linking CXX execu ...

  9. mysql、sql server、oracle大比较

    MYSQL 多个数据库多个用户形式(最好每个数据库对应一个用户),占用内存小,适用于所有平台,开源免费 客户端和命令窗口,都是由数据库决定内容-> use datebase; 组函数在selec ...

  10. Vue3.0网页版聊天|Vue3.x+ElementPlus仿微信/QQ界面|vue3聊天实例

    一.项目简介 基于vue3.x+vuex+vue-router+element-plus+v3layer+v3scroll等技术构建的仿微信web桌面端聊天实战项目Vue3-Webchat.基本上实现 ...