题目链接:

1096: [ZJOI2007]仓库建设

Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32
 
思路:
 
公式我就不推了,推出来就是一个斜率优化dp;
 
AC代码:
 
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL inf=2e18;
const int maxn=1e6+10;
int n,head=1,tail=1;
LL x[maxn],p[maxn],c[maxn],dp[maxn],sump[maxn],sumxp[maxn];
int q[maxn];
double slope(int l,int r)
{
double ratio;
ratio=(double)(dp[r]+sumxp[r]-dp[l]-sumxp[l])/(double)(sump[r]-sump[l]);
return ratio;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lld%lld%lld",&x[i],&p[i],&c[i]);
for(int i=1;i<=n;i++)
{
sump[i]=sump[i-1]+p[i];
sumxp[i]=sumxp[i-1]+x[i]*p[i];
}
for(int i=1;i<=n;i++)
{
while(head<tail&&slope(q[head],q[head+1])<(double)x[i])head++;
dp[i]=c[i]+x[i]*sump[i]-sumxp[i]+dp[q[head]]-x[i]*sump[q[head]]+sumxp[q[head]];
while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}

  

bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)的更多相关文章

  1. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  2. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  3. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  4. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  5. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  6. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  7. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  8. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  9. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

随机推荐

  1. 利用SHELL脚本实现文件完整性检测程序(1.2版更新)

    一..开发背景 因时势所逼,需要对服务器的文件系统实行监控.虽然linux下有不少入侵检测和防窜改系统,但都比较麻烦,用起来也不是很称手.自己琢磨着也不需要什么多复杂的功能,写个脚本应该就可以满足基本 ...

  2. 如何给Ubuntu12.10 安装Vmware Tools

    众所周知在VMware虚拟机中安装好了VMware Tools,才能实现主机与虚拟机之间的文件共享,同时可支持自由拖拽的功能,鼠标也可在虚拟机与主机之前自由移动(而不再用按ctrl+alT释放),而且 ...

  3. linux下的目录结构和内容

    用了这么长时间linux系统,有时候哪个文件应该在哪还是不知道的,所以对于根下的目录结构记下: /bin bin是Binary的缩写.这个目录存放着最经常使用的命令. /boot这里存放的是启动Lin ...

  4. Java程序员应该知道的10个调试技巧

    试可以帮助识别和解决应用程序缺陷,在本文中,作者将使用大家常用的的开发工具Eclipse来调试Java应用程序.但这里介绍的调试方法基本都是通用的,也适用于NetBeans IDE,我们会把重点放在运 ...

  5. [翻译]写给精明Java开发者的测试技巧

    我们都会为我们的代码编写测试,不是吗?毫无疑问,我知道这个问题的答案可能会从 “当然,但你知道怎样才能避免写测试吗?” 到 “必须的!我爱测试”都有.接下来我会给你几个小建议,它们可以让你编写测试变得 ...

  6. 分享15款很实用的 Sass 和 Compass 工具

    Sass 是 CSS 的扩展,增加了嵌套规则,变量,混入功能等很多更多.它简化了组织和维护 CSS 代码的成本.Compass 是一个开源的 CSS 框架,使得使用 CSS3 和流行的设计模式比以往任 ...

  7. Boostrap全局CSS样式

    1.Bootstrap提供的CSS Reset * { box-sizing: border-box; } body { font ...; color: #333; background: ...; ...

  8. SVG图案填充-Pattern

    SVG图案一般用于SVG图形对象的填充fill或描边stroke.这个图形可以是一个SVG元素,也可以是位图图像,通过<pattern>元素在x轴或y轴方向以固定的间隔平铺. <pa ...

  9. GeoEvent使用问题及解决方法整理

    假如GeoEvent的部署环境是一个典型的WebGIS架构(Portal+GIS Server),往往会遇到一些问题,例如: 问题:发布的StreamService流服务无法查看. 原因:默认发布的S ...

  10. SharePoint服务器端对象模型 之 使用CAML进展数据查询

    SharePoint服务器端对象模型 之 使用CAML进行数据查询 一.概述 在SharePoint的开发应用中,查询是非常常用的一种手段,根据某些筛选.排序条件,获得某个列表或者某一些列表中相应的列 ...