题目链接:

1096: [ZJOI2007]仓库建设

Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32
 
思路:
 
公式我就不推了,推出来就是一个斜率优化dp;
 
AC代码:
 
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL inf=2e18;
const int maxn=1e6+10;
int n,head=1,tail=1;
LL x[maxn],p[maxn],c[maxn],dp[maxn],sump[maxn],sumxp[maxn];
int q[maxn];
double slope(int l,int r)
{
double ratio;
ratio=(double)(dp[r]+sumxp[r]-dp[l]-sumxp[l])/(double)(sump[r]-sump[l]);
return ratio;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lld%lld%lld",&x[i],&p[i],&c[i]);
for(int i=1;i<=n;i++)
{
sump[i]=sump[i-1]+p[i];
sumxp[i]=sumxp[i-1]+x[i]*p[i];
}
for(int i=1;i<=n;i++)
{
while(head<tail&&slope(q[head],q[head+1])<(double)x[i])head++;
dp[i]=c[i]+x[i]*sump[i]-sumxp[i]+dp[q[head]]-x[i]*sump[q[head]]+sumxp[q[head]];
while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}

  

bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)的更多相关文章

  1. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  2. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  3. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  4. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  5. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  6. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  7. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  8. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  9. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

随机推荐

  1. C# GDI绘制矩形框,鼠标左键拖动可移动矩形框,滚轮放大缩小矩形框

    最近工作需要,要做一个矩形框,并且 用鼠标左键拖动矩形框移动其位置.网上查了一些感觉他们做的挺复杂的.我自己研究一天,做了一个比较简单的,发表出来供大家参考一下.如觉得简单,可路过,谢谢.哈哈. 先大 ...

  2. asp.net教程:编译错误同时存在于不同dll中

    asp.net 编译错误类型“同时存在于”不同的dll中. 出现这种错误大概有三种情况: 1.ASPX页面,一个*.ASPX,对应着一个*.cs文件,两者其实是一个文件,通过两者实现代码分离,每个*. ...

  3. 速战速决 (4) - PHP: 类基础, 抽象类, 接口, trait

    [源码下载] 速战速决 (4) - PHP: 类基础, 抽象类, 接口, trait 作者:webabcd 介绍速战速决 之 PHP 类基础 抽象类 接口 trait 示例1.类的相关知识点 1(基础 ...

  4. oracle函数大全(转载)

    F.1字符函数--返回字符值 这些函数全都接收的是字符族类型的参数(CHR除外)并且返回字符值.除了特别说明的之外,这些函数大部分返回VARCHAR2类型的数值.字符函数的返回类型所受的限制和基本数据 ...

  5. stm32 usart 异步传输示例

    STM32F103xE的USART异步数据传输示例 USART全称Universal Synchronous/Asynchronous Receiver/Transmitter,是一种可以进行同步/异 ...

  6. ABP Migration(数据库迁移)

    今天准备说说EntityFramework 6.0+,它与我之前所学的4.0有所区别,自从4.1发布以来,code first 被许多人所钟爱,Dbcontext API也由此时而生.早在学校的时候就 ...

  7. java web学习总结(十一) -------------------基本概念使用Cookie进行会话管理

    一.会话的概念 会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 有状态会话:一个同学来过教室,下次再来教室,我们会知道这个同学曾 ...

  8. [deviceone开发]-小草用户分享的Listview停靠的示例

    一.简介 这个例子展示了Listview的多模板,上拉下拉功能,也实现了上下滑动第二行工具栏的停靠功能,值得参考 二.效果图 三.相关下载 https://github.com/do-project/ ...

  9. [转]Design Pattern Interview Questions - Part 2

    Interpeter , Iterator , Mediator , Memento and Observer design patterns. (I) what is Interpreter pat ...

  10. iOS开发中的http浅析

      至于为什么要进行HTTP请求我就不说了.本文主要对HTTP协议做了一些介绍,主要针对网络编程和面试. 先从流程开始说起 APP <---> 服务器 <---> 后台​ 1) ...