题目链接:

1096: [ZJOI2007]仓库建设

Description

  L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内
陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象
部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于
地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库
的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设
置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,
假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到
以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0);2:工厂i目前已有成品数量Pi;:3:在工厂i建立仓库的费用
Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

Input

  第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

Output

  仅包含一个整数,为可以找到最优方案的费用。

Sample Input

3
0 5 10
5 3 100
9 6 10

Sample Output

32
 
思路:
 
公式我就不推了,推出来就是一个斜率优化dp;
 
AC代码:
 
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL inf=2e18;
const int maxn=1e6+10;
int n,head=1,tail=1;
LL x[maxn],p[maxn],c[maxn],dp[maxn],sump[maxn],sumxp[maxn];
int q[maxn];
double slope(int l,int r)
{
double ratio;
ratio=(double)(dp[r]+sumxp[r]-dp[l]-sumxp[l])/(double)(sump[r]-sump[l]);
return ratio;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%lld%lld%lld",&x[i],&p[i],&c[i]);
for(int i=1;i<=n;i++)
{
sump[i]=sump[i-1]+p[i];
sumxp[i]=sumxp[i-1]+x[i]*p[i];
}
for(int i=1;i<=n;i++)
{
while(head<tail&&slope(q[head],q[head+1])<(double)x[i])head++;
dp[i]=c[i]+x[i]*sump[i]-sumxp[i]+dp[q[head]]-x[i]*sump[q[head]]+sumxp[q[head]];
while(head<tail&&slope(q[tail-1],q[tail])>slope(q[tail],i))tail--;
q[++tail]=i;
}
printf("%lld\n",dp[n]);
return 0;
}

  

bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)的更多相关文章

  1. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  2. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  3. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  4. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  5. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  6. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  7. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  8. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  9. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

随机推荐

  1. SQL Server:APPLY表运算符

    SQL Server 2005(含)以上版本,新增了APPLY表运算,为我们日常查询带来了极大的方便. 新增的APPLY表运算符把右表表达式应用到左表表达式中的每一行.它不像JOIN那样先计算那个表表 ...

  2. Laravel [1045] 解决方法 Access denied for user 'homestead'@'localhost'

    这几天学习Laravel框架遇到了数据库方面的问题. PDOException in Connector.php line 55:SQLSTATE[HY000] [1045] Access denie ...

  3. C标准头文件<stdio.h>

    是很多人学C语言接触的第一个头文件,顾名思义,stdio就是"标准输入输出",其中声明了一组关于输入输出的类型,宏和函数,其中就包括了打印著名的"hello,world! ...

  4. 推荐8个实现 SVG 动画的 JavaScript 库

    SVG 是一种分辨率无关的图形(矢量图形).这意味着它在任何类型的屏幕都不会遭受任何质量损失.除此之外,你可以让 SVG 灵活现一些动画效果.这篇文章就给大家推荐8个实现 SVG 动画的 JavaSc ...

  5. JS网站右下角悬浮视窗可关闭广告

    效果体验:http://hovertree.com/texiao/js/4.htm 网站右下角悬浮视窗可关闭广告代码,可收缩.展开,关闭,内容区可自定义html,兼容IE8+.FireFox.Chro ...

  6. 走进 .Net 单元测试

    走进 .Net 单元测试 Intro "不会写单元测试的程序员不是合格的程序员,不写单元测试的程序员不是优秀程序员." -- 一只想要成为一个优秀程序员的渣逼程序猿. 那么问题来了 ...

  7. SharePoint 2013 使用JavaScript对象模型配置智能提示

    前言 默认在VS2012/2013中编写SharePoint JavaScript 客户端对象模型,都没有智能感知的功能,用起来非常麻烦:其实,我们可以手动配置一下,让JavaScript可以进行智能 ...

  8. 国外干货!6个方法助你设计出优秀的APP

    伟大的设计来源于一致性和细致化,而其实只要有足够的纪律,每个团队都可以实现这一点. 品牌(源码:http://www.jinhusns.com/Products/Download/?type=xcj) ...

  9. android:使用RemoteView自定义Notification

    //网上相关内容较少,遂记录下来,备忘. //依然以音乐播放器demo为例. 效果截图 //锤子手机上的效果 step1 准备自定义layout 常规的实现方式,并不会因为是用于notificatio ...

  10. Masonry使用注意事项

    1 理解自身内容尺寸约束与抗压抗拉 自身内容尺寸约束:一般来说,要确定一个视图的精确位置,至少需要4个布局约束(以确定水平位置x.垂直位置y.宽度w和高度h).但是,某些用来展现内容的用户控件,例如文 ...