题目描述

在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长。

输入输出格式

输入格式:

输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m个数字,用空格隔开,0或1.

输出格式:

一个整数,最大正方形的边长

输入输出样例

输入样例#1: 复制

4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1
输出样例#1: 复制

2

题解:

这个题我咋一看不知道从什么地方入手,但是由我们做DP的习惯来说,那就要先找它的一个状态是从哪里转移过来

我找到的是:dp[i][j] = min (min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1]);

dp[i][j]表示以第i行第j列为正方形右上角的大小

为什么呢?

1 1 1 1        1 1 1      1 1      1

1 1 1 1        1 1 1      1 1

1 1 1 1        1 1 1

1 1 1 1

你会发现dp[i][j]所围成的正方形可以由dp[i-1][j] 和 dp[i][j-1] 和 dp[i-1][j-1] 所覆盖,虽然有重叠部分但是对本题无影响

所以他们三个中间的最小值 就是dp[i][j]的值(因为正方形里面要全部充满)

上代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=2005;
7 int dp[105][105],v[105][105];
8 int main()
9 {
10 int n,m;
11 scanf("%d%d",&n,&m);
12 for(int i=1;i<=n;++i)
13 {
14 for(int j=1;j<=m;++j)
15 {
16 scanf("%d",&v[i][j]);
17 }
18 }
19 int maxx=0;
20 for(int i=1;i<=n;++i)
21 {
22 for(int j=1;j<=m;++j)
23 {
24 if(!v[i][j]) continue;
25 if(i==1 || j==1)
26 {
27 dp[i][j]=1;
28 }
29 else
30 {
31 if(v[i-1][j] && v[i][j-1] && v[i-1][j-1])
32 dp[i][j]=min(min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
33 else dp[i][j]=1;
34 }
35 maxx=max(maxx,dp[i][j]);
36 }
37 }
38 printf("%d\n",maxx);
39 return 0;
40 }

题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。

输入输出样例

输入样例#1: 复制

4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0
输出样例#1: 复制

3

题解:

这一题和上一题十分相似,相信大家已经开始用坐上一道题的方法找关系,在这里只说要注意的地方(原数组是v)

1、因为题目要我们求对角线,但是如果dp[i-1][j] 和 dp[i][j-1] 只要一个大于0,那么就dp[i][j]的值就只能是1(这里(还有下面)只讨论v[i][j]的值已经大于0的)

所以我们可以只用dp[i-1][j-1]来完成转化,我们不是用另外两个位置的dp,我们可以使用他们的v的值,因为dp[i-1][j-1]和dp[i][j]在一条对角线上,由dp[i][j]所形成的正方形只      要用dp[i-1][j-1]和第i行,第j列(当然行和列是有限制的)组成就可以

我们就可以先判断dp[i-1][j-1]的大小(假设其值为n),那么行和列的长度最大只能是n+1,我判断行和列的方式是一个一个判断

2、还要注意的是我们不仅要寻找左上角到右下角的对角线,还有另一个方向的呢,可不要忘了

这道题还可以再优化,就是在记录一下:

s1[i][j]表示(i,j)最多向左(或右)延伸多少个格子,使这些格子中的数都是0(不包括(i,j))

s2[i][j]表示(i,j)最多向上延伸多少个格子,使这些格子中的数都是0(不包括(i,j))

这种优化可以看一下这个博客:https://www.luogu.org/blog/wzh/solution-p1736

上代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 using namespace std;
6 const int maxn=2505;
7 int dp[maxn][maxn],v[maxn][maxn];
8 int main()
9 {
10 int n,m;
11 scanf("%d%d",&n,&m);
12 for(int i=1; i<=n; ++i)
13 {
14 for(int j=1; j<=m; ++j)
15 {
16 scanf("%d",&v[i][j]);
17 }
18 }
19 int maxx=0;
20 for(int i=1; i<=n; ++i)
21 {
22 for(int j=1; j<=m; ++j)
23 {
24 if(!v[i][j]) continue;
25 if(i==1 || j==1)
26 {
27 dp[i][j]=1;
28 }
29 else
30 {
31 int temp=1,k=1;
32 for(k;k<=dp[i-1][j-1];++k)
33 {
34 if(!v[i-k][j] && !v[i][j-k])
35 ++temp;
36 else break;
37 }
38 dp[i][j]=temp;
39 }
40 maxx=max(maxx,dp[i][j]);
41 }
42 }
43 memset(dp,0,sizeof(dp));
44 for(int i=1; i<=n; ++i)
45 {
46 for(int j=m; j>=1; --j)
47 {
48 if(!v[i][j]) continue;
49 if(i==1 || j==m)
50 {//printf("***\n");
51 dp[i][j]=1;
52 }
53 else
54 {
55 //printf("%d %d\n",i,j);
56 int temp=1,k=1;
57 for(k;k<=dp[i-1][j+1];++k)
58 {
59
60 if(!v[i-k][j] && !v[i][j+k])
61 ++temp;
62 else break;
63 }
64 dp[i][j]=temp;
65 }
66 maxx=max(maxx,dp[i][j]);
67 }
68 }
69 printf("%d\n",maxx);
70 return 0;
71 }

P1387 最大正方形 && P1736 创意吃鱼法(DP)的更多相关文章

  1. P1387 最大正方形&&P1736 创意吃鱼法

    P1387 最大正方形 P1736 创意吃鱼法 两道类似的$DP$ 转移方程基本上类似于$f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))$ 考虑构成 ...

  2. 洛谷P1736 创意吃鱼法 dp

    正解:dp 解题报告: 早就想写dp的题目辣!我发现我的dp好差啊QAQ所以看到列表的小朋友写dp的题目就跟着他们的步伐做下题好辣QwQ 这题的话没有那——么难,大概说下趴QwQ 首先说下题意 前面一 ...

  3. P1736 创意吃鱼法 /// DP

    题目大意: https://www.luogu.org/problemnew/show/P1736 题解 dplr[][] 当前点左边(副对角线时为右边)有多少个连续的0 dpup[][] 当前点上边 ...

  4. 洛谷 P1736 创意吃鱼法

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1736 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢( ...

  5. P1736 创意吃鱼法[二维dp]

    题目背景 感谢@throusea 贡献的两组数据 题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她 ...

  6. 洛谷 P1736 创意吃鱼法 Label:dp || 前缀和

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  7. 洛谷P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  8. P1736 创意吃鱼法 图的DP

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

  9. P1736 创意吃鱼法

    题目描述 回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*).她发现,把大池子视为01矩阵(0表示对应位置无鱼,1 ...

随机推荐

  1. Java并发包源码学习系列:详解Condition条件队列、signal和await

    目录 Condition接口 AQS条件变量的支持之ConditionObject内部类 回顾AQS中的Node void await() 添加到条件队列 Node addConditionWaite ...

  2. spring cloud gateway 日志打印

    从api请求中获取访问的具体信息,是一个很常见的功能,这几天在研究springcloud,使用到了其中的gateway,刚好将研究的过程结果都记录下来 0. Version <parent> ...

  3. 【Spring】Spring的事务管理 - 1、Spring事务管理概述(数据库事务、Spring事务管理的核心接口)

    Spring事务管理概述 文章目录 Spring事务管理概述 数据库事务 什么是Spring的事务管理? Spring对事务管理的支持 Spring事务管理的核心接口 Platform Transac ...

  4. 【Java】Java关键字、含义

    Java关键字 来自 Java 核心技术卷I 基础知识(原书第10 版)/( 美)凯S 霍斯特曼(Cay S . Horstmann )著: 周立新等译一北京:机械工业出版社, 2016 . 8 Ja ...

  5. CTFHub - Web(一)

    请求方法: 1.进入页面,提示:HTTP 请求方法, HTTP/1.1协议中共定义了八种方法(也叫动作)来以不同方式操作指定的资源. 2.当前http的请求方式是get请求,当你使用CTFHUB为请求 ...

  6. IE浏览器兼容问题总结

    IE浏览器兼容问题总结 引自掘金:https://juejin.cn/post/6844903825854185480 一.标准盒模型和怪异盒模型 浏览器的盒子模型分为两类: 标准的W3C盒子模型. ...

  7. Py迭代和迭代器,生成器,生产者和消费者模型

    迭代器iter 1.迭代的含义: 每次生成的结果依赖于上一次.问路,先问第一个人,第一个人不知道他就说第二个人知道,然后去找第二个人.第二个人不知道就说第三个人知道,然后去找第三个人 2.递归的含义: ...

  8. ELK (elasticsearch+kibana+logstash+elasticsearch-head) 华为云下载地址

    https://mirrors.huaweicloud.com/elasticsearch https://mirrors.huaweicloud.com/kibana https://mirrors ...

  9. SQL Server 邮箱告警配置

    目录 配置数据库邮件 * 手动启用数据库邮件功能 * 配置数据库邮件 * 测试数据库邮件 实现 JOB 任务运行状态的检测 * 定义操作员 * 新建死锁警报 * 设置 SQL Server 代理 创建 ...

  10. UDP flood UDP Port Denial-of-Service Attack

    https://baike.baidu.com/item/UDP%20flood/5504851 UDPFlood是日渐猖厥的流量型DoS攻击,原理也很简单.常见的情况是利用大量UDP小包冲击DNS服 ...