HRBUST - 1818 石子合并 区间dp入门
有点理解了进阶指南上说的”阶段,状态和决策“
/*
区间dp的基础题:
以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用
状态转移方程dp[l][r]=sum[r]-sum[l]+min(dp[l][k]+dp[k+1][r]),其中k是决策
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std; int n,sum[],a[],dp[][]; int main(){
while(scanf("%d",&n)==){
for(int i=;i<=n;i++)scanf("%d",&a[i]);
memset(dp,0x3f,sizeof dp);
for(int i=;i<=n;i++){//初始状态
dp[i][i]=;
sum[i]=sum[i-]+a[i];
} for(int len=;len<=n;len++)//阶段
for(int l=;l<=n-len+;l++){//状态;左端点
int r=l+len-;//状态,右端点
for(int k=l;k<r;k++)//决策
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+][r]);
dp[l][r]+=sum[r]-sum[l-];
}
printf("%d ",dp[][n]); memset(dp,,sizeof dp);
for(int len=;len<=n;len++)
for(int l=;l<=n-len+;l++){
int r=l+len-;
for(int k=;k<r;k++)
dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+][r]);
dp[l][r]+=sum[r]-sum[l-];
}
printf("%d\n",dp[][n]);
}
}
HRBUST - 1818 石子合并 区间dp入门的更多相关文章
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- HRBUST 1818 石子合并问题--直线版
石子合并问题--直线版 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HRBUST. Original ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 石子合并 区间dp模板
题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...
- [nyoj737]石子归并(区间dp入门题)
题意:有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值 ...
- 石子合并 区间DP模板题
题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...
- 洛谷 P1080 石子合并 ( 区间DP )
题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...
- 石子合并——区间dp
石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
随机推荐
- Java基础-考察JVM内部结构的常用工具介绍
Java基础-考察JVM内部结构的常用工具介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们可以通过jvisualvm.exe考察jvm内部结构.而jvisualvm.exe ...
- 【1】AQS详解
概述: 它内部实现主要是状态变量state和一个FIFO队列来完成,同步队列的头结点是当前获取到同步状态的结点,获取同步状态state失败的线程,会被构造成一个结点加入到同步队列尾部(采用自旋CAS来 ...
- vue常用UI组件
Mint UI 项目主页:http://mint-ui.github.io/#!/zh-cn demo:http://elemefe.github.io/mint-ui/#/ github地址:htt ...
- 打包pyinstaller
安装:pip3 install pyinstaller 了解几个常用命令 参数 用处 -F 将程序打包成一个文件 -w 去除黑框 -i 添加程序图标 我们将需要打包的test.py文件放到桌面上,之后 ...
- 第16月第23天 atos
1. grep --after-context=2 "Binary Images:" *crash xcrun atos -o zhiniao_adhoc_stg1.app.dSY ...
- Python中os.system和os.popen区别
Python调用Shell,有两种方法:os.system(cmd)或os.popen(cmd)脚本执行过程中的输出内容.实际使用时视需求情况而选择. 两者的区别是: os.system(cmd)的返 ...
- C++ vector 使用笔记
map 插入 vector #include <string> #include <iostream> #include <algorithm> #include ...
- 说几个python与c区别的地方以及静态变量,全局变量的区别
一: python代码: a = 2 def b(): print a a = 4 print a b() 在b函数中,有a=4这样的代码,说明a是函数b内部的局部变量,而不是外部的那个值为2的全局变 ...
- Microservice Patterns
https://www.manning.com/books/microservice-patterns http://www.jianshu.com/p/2f32ac949138
- python - str和repr方法:
# python 内置__str__()和__repr__()方法: #显示自定制 # 示例1 # a = 123 # print(a.__str__()) # 示例2 class Test(): d ...