[PYTHON-TSNE]可视化Word Vector
需要的几个文件:
1.wordList.txt,即你要转化成vector的word list:
spring
maven
junit
ant
swing
xml
jre
jdk
jbutton
jpanel
swt
japplet
jdialog
jcheckbox
jlabel
jmenu
slf4j
test
unit
2.label.txt, 即图中显示的label,可以与wordlist.txt中的word不同。
spring
maven
junit
ant
swing
xml
jre
jdk
jbutton
jpanel
swt
japplet
jdialog
jcheckbox
jlabel
jmenu
slf4j
test
unit
3.model,用gensim生成的word2vec model;
4.运行buildWordVectorFromW2V.py,用于生成wordvectorlist:
from gensim.models.word2vec import Word2Vec
from pathutil import get_base_path modelpath = 'XXX/model' model = Word2Vec.load(modelpath)
sentenceFilePath = 'wordList.txt'
vectorFilePath = 'word2vec.txt' sentence = []
writeStr = ''
with open(sentenceFilePath, 'r') as f:
for line in f:
sentWordList = line.strip().split(' ')
for word in sentWordList:
if word not in model:
print 'error!'
vec = model[word]
for vecTmp in vec:
writeStr += (str(vecTmp) + ' ')
writeStr += '\n' f = open(vectorFilePath, "w")
f.write(writeStr.strip())
5.运行visualization.py,用于生成图片:
import numpy as np
from gensim.models.word2vec import Word2Vec
import matplotlib.pyplot as plt
from pathutil import get_base_path modelpath = 'XXX/model'
model = Word2Vec.load(modelpath)
sentenceFilePath = 'wordlist.txt'
labelFilePath = 'wordlist.txt' visualizeVecs = []
with open(sentenceFilePath, 'r') as f:
for line in f:
word = line.strip()
vec = model[word.lower()]
visualizeVecs.append(vec) visualizeWords = []
with open(labelFilePath, 'r') as f:
for line in f:
word = line.strip()
visualizeWords.append(word.lower()) visualizeVecs = np.array(visualizeVecs).astype(np.float64)
# Y = tsne(visualizeVecs, 2, 200, 20.0);
# # Plot.scatter(Y[:,0], Y[:,1], 20,labels);
# # ChineseFont1 = FontProperties('SimHei')
# for i in xrange(len(visualizeWords)):
# # if i<len(visualizeWords)/2:
# # color='green'
# # else:
# # color='red'
# color = 'red'
# plt.text(Y[i, 0], Y[i, 1], visualizeWords[i],bbox=dict(facecolor=color, alpha=0.1))
# plt.xlim((np.min(Y[:, 0]), np.max(Y[:, 0])))
# plt.ylim((np.min(Y[:, 1]), np.max(Y[:, 1])))
# plt.show() # vis_norm = np.sqrt(np.sum(temp**2, axis=1, keepdims=True))
# temp = temp / vis_norm
temp = (visualizeVecs - np.mean(visualizeVecs, axis=0))
covariance = 1.0 / visualizeVecs.shape[0] * temp.T.dot(temp)
U, S, V = np.linalg.svd(covariance)
coord = temp.dot(U[:, 0:2])
for i in xrange(len(visualizeWords)):
print i
print coord[i, 0]
print coord[i, 1]
color = 'red'
plt.text(coord[i, 0], coord[i, 1], visualizeWords[i], bbox=dict(facecolor=color, alpha=0.1),
fontsize=22) # fontproperties = ChineseFont1
plt.xlim((np.min(coord[:, 0]), np.max(coord[:, 0])))
plt.ylim((np.min(coord[:, 1]), np.max(coord[:, 1])))
plt.show()
运行结果:

[PYTHON-TSNE]可视化Word Vector的更多相关文章
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- Python数据可视化-seaborn库之countplot
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...
- Python数据可视化 -- Wordcloud
Python数据可视化 -- Wordcloud 安装 启动命令行,输入:pip install wordcloud word cloud 库介绍 及简单使用 wordcloud库,可以说是pytho ...
- Python数据可视化编程实战——导入数据
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过 ...
- python如何转换word格式、读取word内容、转成html
# python如何转换word格式.读取word内容.转成html? import docx from win32com import client as wc # 首先将doc转换成docx wo ...
- 【转】Python——plot可视化数据,作业8
Python——plot可视化数据,作业8(python programming) subject1k和subject1v的形状相同 # -*- coding: utf-8 -*- import sc ...
- Python数据可视化编程实战pdf
Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...
- [Python] Python 学习 - 可视化数据操作(一)
Python 学习 - 可视化数据操作(一) GitHub:https://github.com/liqingwen2015/my_data_view 目录 折线图 散点图 随机漫步 骰子点数概率 文 ...
- 【数据科学】Python数据可视化概述
注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地 ...
随机推荐
- softmax,softmax loss和cross entropy的区别
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014380165/article/details/77284921 我们知道卷积神经网络(CNN ...
- HTML:DOM 对象
ylbtech-HTML:DOM 对象 1. Document 对象返回顶部 1-1. Document 对象 每个载入浏览器的 HTML 文档都会成为 Document 对象. Document 对 ...
- vs2010编译错误(报错:LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏)
报错:LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 1> 这段时间忙于看文献,没用过VS了. 今天用着用着就报错了: LINK : fat ...
- 使用ThreadLocal来实现一个本地缓存
大家应该知道,用户从发起请求,到服务器响应的这个过程中,在服务器中是在一个线程中的.如果我们吧查询出来的对象放到这个线程自己的缓存中,到用户请求结束时,把这些东西清理掉,应该是一个不错的cache方案 ...
- 【C#】详解C#异常
目录结构: contents structure [+] 异常处理机制 try块 catch块 finally块 自定义异常 CLS异常和非CLS异常 在这篇文章中,笔者会阐述C#中的异常.C#是一门 ...
- SQL Server 数据库基础笔记分享(上)
前言 本文是个人学习SQL Server 数据库时的以往笔记的整理,内容主要是对数据库的基本增删改查的SQL语句操作和约束,视图,存储过程,触发器的基本了解. 注:内容比较基础,适合入门者对SQL S ...
- 9.5 翻译系列:数据注解之ForeignKey特性【EF 6 Code-First系列】
原文链接:https://www.entityframeworktutorial.net/code-first/foreignkey-dataannotations-attribute-in-code ...
- IOS 简单的 加减分 动画
使用 shapeLayer 当动画层 其实以前有写过 类似的了 github: https://github.com/li6185377/AddScore self.pregress = [[CAS ...
- C# 重启exe
休夸此地分天下 c# 关闭和重启.exe程序 Process[] myprocess = Process.GetProcessesByName("a"); )//判断如果存在 { ...
- Linux查看CPU和内存的配置信息
CPU配置信息:frank@ubuntu:~/test/python$ cat /proc/cpuinfo processor : #系统中逻辑处理核的编号 vendor_id : GenuineIn ...