1.定义:

$c[i][j]=\sum a[i][k]\times b[k][j]$

所以矩阵乘法有条件,(n*m)*(m*p)=n*p

即第一个矩阵的列数等于第二个矩阵的行数,否则没有意义。

2.结合律与分配率

矩阵乘法不一定任何时候都有交换律。因为交换后甚至不能保证第一个矩阵的列数等于第二个矩阵的行数。

但是,矩阵乘法有结合律。

A*B*C=A*(B*C)

这是一个最常用的运算律,使之可以用矩阵快速幂。

3.构造技巧。

矩阵乘法主要用途还是矩阵加速dp。

例如什么n=1e9之类的。

关键还是在于列出dp或者叫递推式子。

BY LYD:

1.一定是线性递推式(斐波那契数列)

2.总有一个转移矩阵(通常还是正方形)一直不变(才能快速幂)

3.矩阵边长不能太大,因为乘法复杂度是O(n^3)

4.矩阵保留能往下递推的项即可。

4.基础应用:

①斐波那契数列第1e9项。斐波那契数列

[TJOI2015]棋盘

矩阵乘法除了这样的优化dp/递推之外,还可以就矩阵乘法本身出一些题目。

以及一些以矩阵乘法为基础的构造

5.板板题——预处理+矩阵+定义新运算

[学习笔记]矩阵乘法及其优化dp的更多相关文章

  1. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  2. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  3. 学习笔记:四边形不等式优化 DP

    定义 & 等价形式 四边形不等式是定义在整数集上的二元函数 \(w(x, y)\). 定义:对于任意 \(a \le b \le c \le d\),满足交叉小于等于包含(即 \(w(a, c ...

  4. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  5. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  6. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  7. CUDA 矩阵乘法终极优化指南

    作者:马骏 | 旷视 MegEngine 架构师 前言 单精度矩阵乘法(SGEMM)几乎是每一位学习 CUDA 的同学绕不开的案例,这个经典的计算密集型案例可以很好地展示 GPU 编程中常用的优化技巧 ...

  8. 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)

    传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...

  9. 蓝桥 ADV-232 算法提高 矩阵乘法 【区间DP】

      算法提高 矩阵乘法   时间限制:3.0s   内存限制:256.0MB      问题描述 有n个矩阵,大小分别为a0*a1, a1*a2, a2*a3, ..., a[n-1]*a[n],现要 ...

随机推荐

  1. MAC清理DS_Store和._文件

    打开终端输入 find . -name .DS_Store -type f -delete ; find . -type d | xargs dot_clean

  2. Tensorflow框架之AlexNet

    from datetime import datetime import math import time import tensorflow as tf batch_size=32 num_batc ...

  3. Java反编译插件

    一.eclipse->help->Eclipse Marketplace 如下图:搜索JadClipse,install进行下载安装,

  4. 如何理解IPD+CMMI+Scrum一体化研发管理解决方案之Scrum篇

    如何快速响应市场的变化,如何推出更有竞争力的产品,如何在竞争中脱颖而出,是国内研发企业普遍面临的核心问题,为了解决这些问题,越来越多的企业开始重视创新与研发管理,加强研发过程的规范化,集成产品开发(I ...

  5. preg_replace 以及弃用的e

    preg_replace (PHP 4, PHP 5) preg_replace — 执行一个正则表达式的搜索和替换 说明¶ mixed preg_replace ( mixed $pattern , ...

  6. Spring演示及总结

    一.目标 二.分工 三.回顾 发现问题: 第一个冲刺的任务以基本完成,但队友的状态相对有些疲软,主要原因可能是这两周有好几个课程大作业要赶, 有的队友还要为比赛做准备,及做一些其他是项目,时间较紧,有 ...

  7. Thunder团队——选题展示

    团队名称:Thunder 组长:王航 成员:李传康.代秋彤.邹双黛.苗威.宋雨.胡佑蓉.杨梓瑞 项目名称:爱阅app 视频展示: http://www.cnblogs.com/lick468/p/76 ...

  8. mysql数据库工具

    1.navicat12 中文版及破解 链接:https://pan.baidu.com/s/1TH8m6lduHJybUGhmjFPIAA 提取码:kwcd 2.旧版本mysql-front(连接可选 ...

  9. zigbee,质量追溯系统,上位机,mis系统,C#(一)

    一.效果截图 登录界面 主界面 查看养殖信息界面 添加养殖信息 温度采集实时监控界面1 温度采集实时监控界面2 信息追溯

  10. 总结在Visual Studio Code运行node.js项目遇到的问题

    一.cannot find module “lodash” 项目运行时出现以下错误: Error: Cannot find module 'lodash' at Function.Module._re ...