题目描述

如题,初始小根堆为空,我们需要支持以下3种操作:

操作1: 1 x 表示将x插入到堆中

操作2: 2 输出该小根堆内的最小数

操作3: 3 删除该小根堆内的最小数

输入输出格式

输入格式:

第一行包含一个整数N,表示操作的个数

接下来N行,每行包含1个或2个正整数,表示三种操作,格式如下:

操作1: 1 x

操作2: 2

操作3: 3

输出格式:

包含若干行正整数,每行依次对应一个操作2的结果。

输入输出样例

输入样例#1:

5
1 2
1 5
2
3
2
输出样例#1:

2
5

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=15

对于70%的数据:N<=10000

对于100%的数据:N<=1000000(注意是6个0。。。不过不要害怕,经过编者实测,堆是可以AC的)

样例说明:

故输出为2、5

明天市赛,继续复习板子。

代码丑勿喷。

 program rrr(input,output);
var
a:array[..]of longint;
n,opt,i,m,t,k,x:longint;
procedure ins;
begin
inc(m);a[m]:=x;k:=m;
while (k>) and (a[k>>]>a[k]) do begin t:=a[k>>];a[k>>]:=a[k];a[k]:=t;k:=k>>; end;
end;
procedure del;
begin
a[]:=a[m];dec(m);k:=;
while true do
begin
if k+k>m then exit;
if k+k=m then
begin
if a[k+k]<a[k] then begin t:=a[k+k];a[k+k]:=a[k];a[k]:=t; end;
break;
end;
if (a[k+k]>=a[k]) and (a[k+k+]>=a[k]) then break;
if a[k+k]<a[k+k+] then
begin t:=a[k+k];a[k+k]:=a[k];a[k]:=t;k:=k+k; end
else begin t:=a[k+k+];a[k+k+]:=a[k];a[k]:=t;k:=k+k+; end;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n);
m:=;
for i:= to n do
begin
read(opt);
if opt= then begin read(x);ins; end
else if opt= then writeln(a[])
else del;
end;
close(input);close(output);
end.

堆模板(pascal)洛谷P3378的更多相关文章

  1. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  2. FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)

    洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG ...

  3. 扩展中国剩余定理学习笔记+模板(洛谷P4777)

    题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq ...

  4. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  5. 最小表示法模板(洛谷P1368 工艺)(最小表示法)

    洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...

  6. 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)

    分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...

  7. 树剖模板(洛谷P3384 【模板】树链剖分)(树链剖分,树状数组,树的dfn序)

    洛谷题目传送门 仍然是一个板子. 不过蒟蒻去学了一下BIT维护区间修改区间求和,常数果真十分优秀 设数列为\(a_i\),差分数组\(d_ i=a_ i-a_ {i-1}\),前缀和\(s_i=\su ...

  8. spfa模板(洛谷3371)

    洛谷P3371 //spfa:求s到各点的最短路,可含负权边 #include <cstdio> using namespace std; ,max_m=,inf=; struct ety ...

  9. KMP【模板】 && 洛谷 P3375

    题目传送门 解题思路: 首先说KMP的作用:对于两个字符串A,B(A.size() > B.size()),求B是否是A的一个字串或B在A里的位置或A里有几个B,说白了就是字符串匹配. 下面创设 ...

随机推荐

  1. week8课上实践

    课上练习. 第一题: 参考 http://www.cnblogs.com/rocedu/p/6766748.html#SECCLA 在Linux下完成"求命令行传入整数参数的和" ...

  2. 微信小程序:页面跳转时传递数据到另一个页面

    一.功能描述 页面跳转时,同时把当前页面的数据传递给跳转的目标页面,并在跳转后的目标页面进行展示 二.功能实现 1. 代码实现 test1页面 // pages/test1/test1.js Page ...

  3. 面向忙碌开发者的 Android

    面向忙碌开发者的 Android passiontim 关注 2016.11.19 21:41* 字数 4013 阅读 2967评论 2喜欢 92 面向忙碌开发者的 Android 视频教程(Tuts ...

  4. 我们一起学习WCF 第七篇会话模式

    会话:就是客户端和服务端之间的谈话.比喻A和B去登陆网站,那么A用户登陆进去肯定显示A的用户详情,那么这就是A和服务器之间的交流.同样B用户登陆之后显示B的详情,这就表示这是B和服务器之间的交流. 如 ...

  5. node升级7.0以上版本使用gulp时报错

    今天使用gulp时 ,出现了以下报错信息: Error: Cannot find module 'internal/fs'at Object.<anonymous> (/home/XXX/ ...

  6. Python接口测试实战3(上)- Python操作数据库

    如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...

  7. leetcode27_C++Remove Element

    给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成 ...

  8. 【Python入门学习】列表生成和函数生成器的方式实现杨辉三角

    列表生成: L = [i for i in range(10)] 列表生成器: g = (i for i in range(10)) 函数生成器使用的关键字yield实现 例如fib生成器 def f ...

  9. Python基础知识-05-数据类型总结字典

    python其他知识目录 1.一道题,选择商品的序号.程序员和用户各自面对的序号起始值 如有变量 googs = ['汽车','飞机','火箭'] 提示用户可供选择的商品: 0,汽车1,飞机2,火箭用 ...

  10. Python爬虫入门(3-4):Urllib库的高级用法

    1.分分钟扒一个网页下来 怎样扒网页呢?其实就是根据URL来获取它的网页信息,虽然我们在浏览器中看到的是一幅幅优美的画面,但是其实是由浏览器解释才呈现出来的,实质它 是一段HTML代码,加 JS.CS ...