堆模板(pascal)洛谷P3378
题目描述
如题,初始小根堆为空,我们需要支持以下3种操作:
操作1: 1 x 表示将x插入到堆中
操作2: 2 输出该小根堆内的最小数
操作3: 3 删除该小根堆内的最小数
输入输出格式
输入格式:
第一行包含一个整数N,表示操作的个数
接下来N行,每行包含1个或2个正整数,表示三种操作,格式如下:
操作1: 1 x
操作2: 2
操作3: 3
输出格式:
包含若干行正整数,每行依次对应一个操作2的结果。
输入输出样例
5
1 2
1 5
2
3
2
2
5
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=15
对于70%的数据:N<=10000
对于100%的数据:N<=1000000(注意是6个0。。。不过不要害怕,经过编者实测,堆是可以AC的)
样例说明:

故输出为2、5
明天市赛,继续复习板子。
代码丑勿喷。
program rrr(input,output);
var
a:array[..]of longint;
n,opt,i,m,t,k,x:longint;
procedure ins;
begin
inc(m);a[m]:=x;k:=m;
while (k>) and (a[k>>]>a[k]) do begin t:=a[k>>];a[k>>]:=a[k];a[k]:=t;k:=k>>; end;
end;
procedure del;
begin
a[]:=a[m];dec(m);k:=;
while true do
begin
if k+k>m then exit;
if k+k=m then
begin
if a[k+k]<a[k] then begin t:=a[k+k];a[k+k]:=a[k];a[k]:=t; end;
break;
end;
if (a[k+k]>=a[k]) and (a[k+k+]>=a[k]) then break;
if a[k+k]<a[k+k+] then
begin t:=a[k+k];a[k+k]:=a[k];a[k]:=t;k:=k+k; end
else begin t:=a[k+k+];a[k+k+]:=a[k];a[k]:=t;k:=k+k+; end;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n);
m:=;
for i:= to n do
begin
read(opt);
if opt= then begin read(x);ins; end
else if opt= then writeln(a[])
else del;
end;
close(input);close(output);
end.
堆模板(pascal)洛谷P3378的更多相关文章
- 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...
- FWT模板(洛谷P4717 【模板】快速沃尔什变换)(FWT)
洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG ...
- 扩展中国剩余定理学习笔记+模板(洛谷P4777)
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 最小表示法模板(洛谷P1368 工艺)(最小表示法)
洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...
- 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...
- 树剖模板(洛谷P3384 【模板】树链剖分)(树链剖分,树状数组,树的dfn序)
洛谷题目传送门 仍然是一个板子. 不过蒟蒻去学了一下BIT维护区间修改区间求和,常数果真十分优秀 设数列为\(a_i\),差分数组\(d_ i=a_ i-a_ {i-1}\),前缀和\(s_i=\su ...
- spfa模板(洛谷3371)
洛谷P3371 //spfa:求s到各点的最短路,可含负权边 #include <cstdio> using namespace std; ,max_m=,inf=; struct ety ...
- KMP【模板】 && 洛谷 P3375
题目传送门 解题思路: 首先说KMP的作用:对于两个字符串A,B(A.size() > B.size()),求B是否是A的一个字串或B在A里的位置或A里有几个B,说白了就是字符串匹配. 下面创设 ...
随机推荐
- 20155322 2016-2017-2 《Java程序设计》第三周学习总结
20155322 2016-2017-2 <Java程序设计>第三周学习总结 教材学习内容总结 本周学习的内容主要为教材的第四第五章,下面是总结: 第四章 主要讨论了五个问题:类与对象.基 ...
- echarts x轴文字换行显示
xAxis : [ { splitLine:{show:false}, type : 'category', data : ['社交人际','沟通交流','心理认知','游戏玩耍','大小运动','生 ...
- 【LG4587】[FJOI2016]神秘数
[LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...
- javaweb(三十四)——使用JDBC处理MySQL大数据
一.基本概念 大数据也称之为LOB(Large Objects),LOB又分为:clob和blob,clob用于存储大文本,blob用于存储二进制数据,例如图像.声音.二进制文等. 在实际开发中,有时 ...
- 【转】: 塞尔达组在GDC2017演讲的文字翻译:技术的智慧
大家好,我是堂田卓宏,在<荒野之息>的制作中我担任技术总监的职位.我在2003年加入任天堂,并且作为程序员参与了许多不同游戏的制作.在本次的制作的过程中,我们的程序员团队也需要打破许多游戏 ...
- PLSQL变量和类型,流程控制语句,集合
---PLSQL 调试授权 GRANT debug any procedure, debug connect session TO scott; --定义变量 declare part_number ...
- 【python 3.6】调用另一个文件的类的方法
文件1:test12.py 文件2:test13.py 文件1 如下: #!/usr/bin/python # -*- coding: utf-8 -*- ''' ''' class abcd(obj ...
- 利用xlsxwriter生成数据报表
#!/usr/bin/env python# -*- coding:utf-8 -*-import os,xlsxwriter,datetimeimport ConfigParserfrom send ...
- leetcode个人题解——#34 Find First and Last Position of Element in Sorted Array
思路:先二分查找到一个和target相同的元素,然后再左边二分查找左边界,右边二分查找有边界. class Solution { public: , end = -; int ends; int lS ...
- 兰亭集势收购美国社交购物网站Ador,收购的是人才
1 月 6 日消息,外贸电商公司兰亭集势(LightInTheBox)今日宣布,已经完成对美国社交电商网站 Ador 公司的收购.Ador 公司总部位于西雅图.这项资产收购通过现金完成,但未披露交易金 ...