思路:完全背包加容斥原理

首先不考虑限制,那么很容易可以预处理出f[i](f[i]+=f[i-c[i]],1<=i<=4,i-c[i]>=0)。

然后考虑如何求出限制后的答案。

首先考虑这样的一个问题:x1+x2+x3+x4+x5+...+xn=m有多少组整数解。显然插板法可以解决这个问题,但如果引入对于xi的限制,令xi不能超过ri,那么这个问题就应该要用到容斥原理了。

令Si为所有满足条件的xi的集合,那么这个问题就转化为了求所有Si的交集后再用插板法的一个问题了,瓶颈就在于如何求出Si的交集,于是可以考虑容斥原理,Si的交集即全集U-所有Si补集的并集,而Si的补集也就是满足xi>ri即xi>=ri+1的xi的集合,这样令所有的xi-=(ri+1),也就是令m+=(ri+1),然后即可用容斥原理加插板法求出所有Si补集的并集,全集U即原始问题的答案,那么这样运用容斥就完美地解决了这样一个问题。

再回到我们的问题,可以发现这就是刚刚提到的问题的每一个xi乘上一个权值,那么就令m+=(ri+1)*ci即可,于是对于所有询问均可做到O(1)回答。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 101000 int c[],d[],num[],cases;
long long f[maxn]; int main(){
for (int i=;i<=;i++) scanf("%d",&c[i]);scanf("%d",&cases);
f[]=;
for (int i=;i<=;i++)
for (int j=c[i];j<=;j++)
f[j]+=f[j-c[i]];
num[]=;
for (int i=;i<(<<);i++) num[i]=num[i>>]*((i&)?-:);
while (cases--){
int sum;for (int i=;i<=;i++) scanf("%d",&d[i]);scanf("%d",&sum);long long ans=f[sum];
for (int i=;i<(<<);i++){
int tmp=;
for (int j=;j<;j++)
if ((<<j)&i) tmp+=(d[j+]+)*c[j+];
if (sum>=tmp) ans+=f[sum-tmp]*num[i];
}
printf("%lld\n",ans);
}
return ;
}

bzoj1402:[HAOI2008]硬币购物的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包

    BZOJ_1042_[HAOI2008]硬币购物_容斥原理+背包 题意: 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s i的价值 ...

  6. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  7. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  8. BZOJ1042 [HAOI2008]硬币购物 【完全背包 + 容斥】

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2924  Solved: 1802 [Submit][St ...

  9. 【BZOJ1042】[HAOI2008]硬币购物 容斥

    [BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值 ...

  10. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

随机推荐

  1. 算法导论学习-RED-BLACK TREE

    1. 红黑树(RED-BLACK TREE)引言: ------------------------------------- 红黑树(RBT)可以说是binary-search tree的非严格的平 ...

  2. POJ1226 - Substrings(KMP+二分)

    题目大意 给定n个字符串,字符串可逆序可顺序,求它们的最长公共子串 题解 在输入的过程中记录一下最短的那个字符串,然后枚举起点,然后进行二分求出子串末位置,然后再验证是否是公共子串,记录最长的公共子串 ...

  3. Asp.Net的应用程序生命周期概述

    参考文献: MSDN:Asp.Net应用程序生命周期 博客:选择HttpHandler还是HttpModule? 1.HttpModule 应用程序(HttpApplication)引发的事件可以由实 ...

  4. python selenium启动浏览器打开百度搜索

    python selenium打开百度搜索 #!usr/bin/python from selenium import webdriver import time browser = webdrive ...

  5. pycharm的使用技巧

    本文将持续更新一些关于在使用pycharm的过程中的小技巧: 多行缩进/取消缩进 选中需要更改的代码,按 shift + tab 多行注释/取消注释 选中需要更改的代码,按 ctrl  +  / 滚轮 ...

  6. 要注意null合并运算符的优先级比+还要低

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:要注意null合并运算符的优先级比+还要低.

  7. PHP流程控制(一)

    单项分支: if(bool判断); 这里只写一句话有作用! if(bool){ 这里可以写多句话! } 双向分支: if(bool判断){ 如果为真则执行这里的语句,可以写多句:(注意如这里没有括号, ...

  8. oracle调优 浅析关联设计

    浅析关联设计 [范式] 比較理想的情况下,数据库中的不论什么一个表都会相应到现实生活中的一个对象,如球员是一个对象,球队是一个对象,赛程是一个对象,比赛结果又是一个对象等等,则就是范式. [关联设计] ...

  9. Could not initialize class org.apache.log4j.LogManager 报错

    部署项目的时候,在windows下一切正常,但是在centos下就发生如下错误 Caused by: java.lang.ExceptionInInitializerError at com.dsid ...

  10. Eclipse reports that Android SDK Content Loader has encountered a problem. parseSdkContent failed.

    1) Download the SDK platform for API 20 (4.4W) 2) Navigate to your sdk folder (should be like D:\Ecl ...