HDOJ/HDU 1865 1sting(斐波拉契+大数~)
Problem Description
You will be given a string which only contains ‘1’; You can merge two adjacent ‘1’ to be ‘2’, or leave the ‘1’ there. Surly, you may get many different results. For example, given 1111 , you can get 1111, 121, 112,211,22. Now, your work is to find the total number of result you can get.
Input
The first line is a number n refers to the number of test cases. Then n lines follows, each line has a string made up of ‘1’ . The maximum length of the sequence is 200.
Output
The output contain n lines, each line output the number of result you can get .
Sample Input
3
1
11
11111
Sample Output
1
2
8
题意:
若干个1,可以选择相邻两个合并成2。问有多少种可能的结果。
分析:递推加大数~
递推公式为db[i] = db[i-1] + db[i-2],斐波那契数列。
怎么推导出来的呢~~~我能说我是看出来的麽~
设有n个1,可以构成f(n)种。则加一个1的时候,前面n种仍然成立 f(n+1)=f(n)+*;
第n+1个1和第n个1相加构成2,前面n-1个1可以组合的个数。 f(n+1)=f(n)+f(n-1);
大数~用java很好过的~c的话,只能用数组模拟了。
import java.math.BigInteger;
import java.util.Scanner;
public class Main{
static BigInteger db[] = new BigInteger[201];
public static void main(String[] args) {
dabiao();
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
String str =sc.next();
int n =str.length();
System.out.println(db[n]);
}
}
private static void dabiao() {
db[1]=new BigInteger("1");
db[2]=new BigInteger("2");
for(int i=3;i<db.length;i++){
db[i]=db[i-1].add(db[i-2]);
}
}
}
HDOJ/HDU 1865 1sting(斐波拉契+大数~)的更多相关文章
- HDOJ/HDU 5686 Problem B(斐波拉契+大数~)
Problem Description 度熊面前有一个全是由1构成的字符串,被称为全1序列.你可以合并任意相邻的两个1,从而形成一个新的序列.对于给定的一个全1序列,请计算根据以上方法,可以构成多少种 ...
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- hdu 5914(斐波拉契数列)
Triangle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- HDU-4794:Arnold(斐波拉契循环节 二次剩余)
本题我只是个搬运工,主要是抢救补板子,所以自己就没写.https://blog.csdn.net/u013534123/article/details/78058997 题意: 大致题意是给你一个N* ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
随机推荐
- DBA词典:数据库设计常用词汇中英文对照表
1. Access method(访问方法):此步骤包括从文件中存储和检索记录. 2. Alias(别名):某属性的另一个名字.在SQL中,可以用别名替换表名. 3. Alternate keys(备 ...
- C#调用ActiveX控件
背景:最近项目中需要用到ActiveX控件,项目是在.Net平台下开发的.因此就直接在项目中添加了对ActiveX控件的引用,添加引用成功.在代码中实例化类的实例也没有问题,但在调用其方法或属性时总是 ...
- 【转】怎样创建一个Xcode插件(Part 2)
原文:How To Create an Xcode Plugin: Part 2/3 原作者:Derek Selander 译者:@yohunl 译者注:原文使用的是xcode6.3.2,我翻译的时候 ...
- C++专题 - WPS是什么
WPS,1988年诞生自一个叫求伯君的24岁年轻人之手,市场占有率一度超过90%,这个产品也成就了这个年轻人.在中国大陆,金山软件公司在政府采购中多次击败微软公司,中国大陆很多政府机关部门.企业都装有 ...
- hdoj 2054(A==B)
注意考虑以下数据: 123 123.0; 0.123 .123; 00.123 0.123; 代码: #include<iostream>#include<cstdio> ...
- [转] 属性选择器.mark
CSS 2 引入了属性选择器. 属性选择器可以根据元素的属性及属性值来选择元素. 简单属性选择 如果希望选择有某个属性的元素,而不论属性值是什么,可以使用简单属性选择器. 例子 1 如果您希望把包含标 ...
- JavaScript学习心得(一)
一Javascript简介 JavaScript是一种面向对象.弱类型的脚本语言!面向对象编程语言(OOP)意味着你用的几乎所有变量都是对象,对象是一种特殊的变量类型,有自己的子变量(称为属性)及函数 ...
- python生成随机二进制文件
import random def genFile(filename,block=1,size=1): f=open(filename,"wb") content="&q ...
- Bag of Words/Bag of Features的Matlab源码发布
2010年11月19日 ⁄ 技术, 科研 ⁄ 共 1296字 ⁄ 评论数 26 ⁄ 被围观 4,150 阅读+ 由于自己以前发过一篇文章讲bow特征的matlab代码的优化的<Bag-Of-Wo ...
- ASP.NET MVC轻教程 Step By Step 8——路由
在前面的教程里,细心的你可能会有个疑问,就是地址栏输入/Home/Write就可以进入留言页面.无论是静态HTML还是ASP/ASP.NET.PHP,URL都是和某个页面相关.比如假设有个URL是“w ...