Project Euler:Problem 39 Integer right triangles
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.
{20,48,52}, {24,45,51}, {30,40,50}
For which value of p ≤ 1000, is the number of solutions maximised?
#include <iostream>
using namespace std; int main()
{
int ans = 0;
int maxp = 0;
for (int i = 12; i <= 1000; i++)
{
int maxc = 0;
for (int a = 1; a < i; a++)
{
for (int b = 1; b < a; b++)
{
int c = i - a - b;
if (c < 0)
break;
if (a*a + b*b == c*c)
maxc++;
}
}
if (maxc>ans)
{
ans = maxc;
maxp = i;
} }
cout << ans << " " << maxp << endl;
system("pause");
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
Project Euler:Problem 39 Integer right triangles的更多相关文章
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 93 Arithmetic expressions
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- (Problem 39)Integer right triangles
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exact ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 32 Pandigital products
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
随机推荐
- Surging Demo 项目之一
原文:Surging Demo 项目之一 开发与运行环境 IDE Visual Stadio 2017/Visual Stadio 2019 Visual Stadio Core Docker 和 D ...
- GO语言学习(二)Windows 平台下 LiteIDE 的安装和使用
1. 安装 Go 语言并设置环境变量 参考GO语言学习(一) 2. MinGW 的下载和安装 Windows 下的 Go 调试还需要安装 MinGW. 2.1 下载安装工具的安装 最新版本下载安装工具 ...
- 克隆windows 2008 x64 后网络问题
克隆windows 2008 x64 后,网卡中配置IP地址192.168.199.40 (NAT 模式) 内网无法ping 通该机器. 使用ipconfig 查看IP显示为 169.254.203. ...
- Spring 定时器 No qualifying bean of type [org.springframework.scheduling.TaskScheduler] is defined(转)
最近项目里面,用了spring的定时任务,一直以来,项目运行的不错.定时器也能正常使用.可是,今天启动项目测试的时候,盯着启动Log看了一阵子,突然间发现,启动的Log中居然有一个异常,虽然一闪而过, ...
- java測试网络连接是否成功并设置超时时间
/** * 获取RMI接口状态 * * @return "0":服务正常,"1": 连接报错,"2":连接超时 */ @Override p ...
- 【81.82%】【codeforces 740B】Alyona and flowers
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 中小研发团队架构实践之RabbitMQ快速入门及应用
原文:中小研发团队架构实践之RabbitMQ快速入门及应用 使用过分布式中间件的人都知道,程序员使用起来并不复杂,常用的客户端API就那么几个,比我们日常编写程序时用到的API要少得多.但是分布式中间 ...
- 【TP SRM 703 div2 250】AlternatingString
Problem Statement A string of zeros and ones is called an alternating string if no two adjacent char ...
- Maven实战——有用Nexus创建私服(下)
使用Maven部署构件至Nexus 日常开发生成的快照版本号构件能够直接部署到Nexus中策略为Snapshot的宿主仓库中.项目正式公布的构建部署到Nexus中策略为Release的宿主仓库中.PO ...
- 菜单之二:使用xml文件定义菜单 分类: H1_ANDROID 2013-11-03 09:39 1038人阅读 评论(0) 收藏
参考<疯狂android讲义>2.10节 P174,参见归档project:XmlMenuDemo.zip 一般推荐使用XML文件定义菜单. 基本步骤如下: 1.定义布局文件 为简单显示原 ...