If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.

{20,48,52}, {24,45,51}, {30,40,50}

For which value of p ≤ 1000, is the number of solutions maximised?

#include <iostream>
using namespace std; int main()
{
int ans = 0;
int maxp = 0;
for (int i = 12; i <= 1000; i++)
{
int maxc = 0;
for (int a = 1; a < i; a++)
{
for (int b = 1; b < a; b++)
{
int c = i - a - b;
if (c < 0)
break;
if (a*a + b*b == c*c)
maxc++;
}
}
if (maxc>ans)
{
ans = maxc;
maxp = i;
} }
cout << ans << " " << maxp << endl;
system("pause");
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

Project Euler:Problem 39 Integer right triangles的更多相关文章

  1. Project Euler:Problem 86 Cuboid route

    A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...

  2. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  3. Project Euler:Problem 55 Lychrel numbers

    If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...

  4. (Problem 39)Integer right triangles

    If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exact ...

  5. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

  6. Project Euler:Problem 32 Pandigital products

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. Project Euler:Problem 76 Counting summations

    It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...

  8. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  9. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

随机推荐

  1. jQuery----鼠标移动、点击案例

    单击隐藏: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...

  2. __block 双下划线定义block变量可在内部修改其值

    //如果外部的变量用了__block关键字,就可以在block内部修改这个变量的值. //block可访问外面定义的变量 int (^Num)(int, int)= ^(int a, int b){ ...

  3. Codeforces Round #315 (Div. 2) (ABCD题解)

    比赛链接:http://codeforces.com/contest/569 A. Music time limit per test:2 seconds memory limit per test: ...

  4. Java文档上传问题设计

    近期公司让做一个文档上传的功能,功能描写叙述大概是这样子滴 书籍名称.书籍定价.书籍封面图片(须要上传).文档内容 (须要上传) .还有其它相关的描写叙述信息. 我的设计  表 A  包括以上字段 , ...

  5. 制作Kinect体感控制小车教程 &lt;一&gt;

    转载请注明出处:http://blog.csdn.net/lxk7280                                        Kinect体感控制小车        Kine ...

  6. [Recompose] Add Local State with Redux-like Reducers using Recompose

    Learn how to use the 'withReducer' higher order component using the alternative reducer form. If you ...

  7. ios开发网络学习:一:NSURLConnection发送GET,POST请求

    #import "ViewController.h" @interface ViewController ()<NSURLConnectionDataDelegate> ...

  8. .NET Framework基础知识(四)(转载)

    .反射:是编程的读取与类型相关联的元数据的行为.通过读取元数据,可以了解它是什么类型以及类型的成员. 比如类中的属性,方法,事件等.所属命名空间System.Reflection. 例:using S ...

  9. js进阶 11-17 juqery如何查找一个元素的同级元素

    js进阶 11-17 juqery如何查找一个元素的同级元素 一.总结 一句话总结:三个方法,向前(prev()),向后(next())和兄弟(siblings()),而前面两个每个都对应三个,pre ...

  10. [内核编程] visual studio 2010配置驱动开发环境

    visual studio 2010 配置驱动开发环境 ** 工具/材料 VS2010.WDK开发包 **  配置过程 以下将讲述VS2010驱动开发环境的配置过程,至于必要软件的安装过程这里不再赘述 ...