原文链接www.cnblogs.com/zhouzhendong/p/UOJ465.html

前言

tmd并查集写挂,调到自闭。

cly和我写挂了同一个地方。

一下救了两个人感觉挺开心。

题解

首先直接写 bfs/记忆化dfs 可以容易地得到一个 $O(m^2)$ ,或者 $O(nm)$ 的做法。常数不大的情况下应该可以得到 70 分。

注意到本题中不要求简单路径,同一条边可以经过多次。

这意味着,我们可以在有边相连的两个同色节点之间来回走。

那么,假设两个点在同一个同色连通块,那么从其中一个点到另一个点的路径的有效信息本质只有两种:是否存在长度为奇数的路径、是否存在长度为偶数的路径。

于是,对于一个同色连通块,我们只需要保留一个带奇环的基环树即可,如果没有满足条件的基环树,就保留一个树。

然后我们考虑拆除所有连接同色点的边,留下所有连接不同色点的边。

类似的,对于剩下的边,我们只要留下一座边数尽量多的生成森林即可。

我丝薄了,写了个并查集维护。其实直接 dfs 就好了。

于是剩下 $O(n)$ 条边,只要做一做最开始的暴力就好了。

时间复杂度 $O(m\cdot \alpha(n) + n^2)$ 或 $O(m + n ^2)$ 。

代码

#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define real __zzd001
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=5005,M=500005;
int n,m,q;
vector <int> e[N];
char s[N];
struct Edge{
int x,y;
}E[M];
int r[N];
namespace S1{
int fa[N],d[N];
void init(){
For(i,1,n)
fa[i]=i;
clr(d);
}
int getf(int x){
if (fa[x]==x)
return x;
int f=getf(fa[x]);
d[x]^=d[fa[x]];
return fa[x]=f;
}
}
namespace S2{
int fa[N];
void init(){
For(i,1,n)
fa[i]=i;
}
int getf(int x){
return fa[x]==x?x:fa[x]=getf(fa[x]);
}
}
int f[N][N];
int qx[N*N],qy[N*N],head=0,tail=0;
void Push(int x,int y){
if (x>y)
swap(x,y);
if (!f[x][y]){
f[x][y]=1;
tail++;
qx[tail]=x;
qy[tail]=y;
}
}
int main(){
n=read(),m=read(),q=read();
scanf("%s",s+1);
For(i,1,m)
E[i].x=read(),E[i].y=read();
S1::init(),S2::init();
For(i,1,m){
int x=E[i].x,y=E[i].y;
if (s[x]==s[y]){
if (S1::getf(x)!=S1::getf(y)){
e[x].pb(y),e[y].pb(x);
S1::d[S1::getf(x)]=S1::d[x]^S1::d[y]^1;
S1::fa[S1::fa[x]]=S1::getf(y);
}
}
else {
if (S2::getf(x)!=S2::getf(y)){
e[x].pb(y),e[y].pb(x);
S2::fa[S2::getf(x)]=S2::getf(y);
}
}
}
For(i,1,m){
int x=E[i].x,y=E[i].y;
S1::getf(x),S1::getf(y);
if (s[x]==s[y]&&!r[S1::getf(x)]&&S1::d[x]==S1::d[y]){
r[S1::getf(x)]=1;
e[x].pb(y),e[y].pb(x);
}
}
For(i,1,n)
Push(i,i);
For(i,1,m)
if (s[E[i].x]==s[E[i].y])
Push(E[i].x,E[i].y);
while (head<tail){
head++;
int x=qx[head],y=qy[head];
for (auto a : e[x])
for (auto b : e[y])
if (s[a]==s[b])
Push(a,b);
}
while (q--){
int x=read(),y=read();
if (x>y)
swap(x,y);
puts(f[x][y]?"YES":"NO");
}
return 0;
}

  

UOJ#465. 【HNOI2019】校园旅行 其他的更多相关文章

  1. 【BZOJ5492】[HNOI2019]校园旅行(bfs)

    [HNOI2019]校园旅行(bfs) 题面 洛谷 题解 首先考虑暴力做法怎么做. 把所有可行的二元组全部丢进队列里,每次两个点分别向两侧拓展一个同色点,然后更新可行的情况. 这样子的复杂度是\(O( ...

  2. [HNOI2019]校园旅行(构造+生成树+动规)

    题目 [HNOI2019]校园旅行 做法 最朴素的做法就是点对扩展\(O(m^2)\) 发现\(n\)比较小,我们是否能从\(n\)下手减少边数呢?是肯定的 单独看一个颜色的联通块,如果是二分图,我们 ...

  3. Luogu P5292 [HNOI2019]校园旅行

    非常妙的一道思博题啊,不愧是myy出的题 首先我们考虑一个暴力DP,直接开一个数组\(f_{i,j}\)表示\(i\to j\)的路径能否构成回文串 考虑直接拿一个队列来转移,队列里存的都是\(f_{ ...

  4. [HNOI2019]校园旅行

    题意 https://www.luogu.org/problemnew/show/P5292 思考 最朴素的想法,从可行的二元组(u,v)向外拓展,及u的出边所指的颜色与v的出边所指的颜色若相同,继续 ...

  5. 洛谷P5292 [HNOI2019]校园旅行(二分图+最短路)

    题面 传送门 题解 如果暴力的话,我们可以把所有的二元组全都扔进一个队列里,然后每次往两边更新同色点,这样的话复杂度是\(O(m^2)\) 怎么优化呢? 对于一个同色联通块,如果它是一个二分图,我们只 ...

  6. [LOJ3057] [HNOI2019] 校园旅行

    题目链接 LOJ:https://loj.ac/problem/3057 洛谷:https://www.luogu.org/problemnew/show/P5292 Solution 先膜一发\(m ...

  7. 【洛谷5292】[HNOI2019] 校园旅行(思维DP)

    点此看题面 大致题意: 给你一张无向图,每个点权值为\(0\)或\(1\),多组询问两点之间是否存在一条回文路径. 暴力\(DP\) 首先,看到\(n\)如此之小(\(n\le5000\)),便容易想 ...

  8. bzoj5492:[Hnoi2019]校园旅行

    传送门 %%%myy 考虑30分做法:暴力bfs,\(f[i][j]\)表示\(i\)到\(j\)可以形成回文串 然而为什么我场上只想到了70分做法,完全没想到30分怎么写.. 100分: 考虑缩边, ...

  9. [HNOI2019]校园旅行(建图优化+bfs)

    30分的O(m^2)做法应该比较容易想到:令f[i][j]表示i->j是否有解,然后把每个路径点数不超过2的有解状态(u,v)加入队列,然后弹出队列时,两点分别向两边搜索边,发现颜色一样时,再修 ...

  10. Loj #3057. 「HNOI2019」校园旅行

    Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...

随机推荐

  1. vue-输入框change事件并获取值

    1.html <input type="text" @change="specifiName($event)" /> 2.js var vm = n ...

  2. Daily Codeforces 计划 训练时录

    时间                 场次                             过题数目      补题数目   难易度 2019.4.7      codeforces-1141 ...

  3. C语言面试题大汇总之华为面试题 Eddy整理

    1.局部变量能否和全局变量重名? 答:能,局部会屏蔽全局.要用全局变量,需要使用"::" ;局部变量可以与全局变量同名,在函数内引用这个变量时,会用到同名的局部变量,而不会用到全局 ...

  4. 1.saltstack入门

    1.安装 master: yum install salt-master salt-minion -y minion: yum install salt-minion -y 2.修改配置文件(mini ...

  5. 一个网站SQL注入的案例

    网站的页面提交参数做了md5转换,而且参数会带入两个SQL语句中执行. 注入是肯定存在的,但是SQLMAP怎么都跑不出来(可能原因是其中有个SQL语句总是报错). 尝试手工,发现 order by 报 ...

  6. sonar服务搭建

    1.下载安装包,我安装的是6.7.6版本 https://www.sonarqube.org/downloads/ 2.安装前的环境要求 JDK1.8+   数据库,我用的是Mysql5.6版本 3. ...

  7. python 机器学习三剑客 之 Matplotlib

    Matplotlib介绍: Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形 . 通过 Matplotlib,开发者可以仅需要几 ...

  8. Q - N! HDU - 1042

    使用java还不熟练,错误在于读入.应用in.hasNext() 代码 import java.text.ParseException; import java.text.SimpleDateForm ...

  9. Timeline高级扩展

    转载于http://forum.china.unity3d.com/thread-32200-1-1.html通过demo讲解了timeline更加复杂的使用方式 Timeline是创建过场动画和影片 ...

  10. get 和free

    1.ngx_pool_t ** ngx_get_pool()//use:getngx_pool_t **pool_address;ngx_pool_t *pool;pool_address = ngx ...