数的计算(数的计数)

题目描述

我们要求找出具有下列性质数的个数(包含输入的自然数n)。先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理:

  1. 不作任何处理;
  2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;
  3. 加上数后,在新加上数的左边继续按此规则进行处理,直到不能再加自然数为止.

例如:

输入:  6
满足条件的数为 6 (此部分不必输出)
16
26
126
36
136
输出: 6

输入

只有一行一个整数,为自然数n(n<=1000)

输出

输出满足条件数的个数

样例输入

6

样例输出

6

分析

  • 手动按照上述过程进行计算,会发现这是个递归的过程,对每一个原始数字m,在前面加i(1,2,3,...m/2),即h(n)=1+h(1)+f(2)+...+h(n/2),对于每一个i,要按照同样的规则进行,这用递归可以实现(见例程1),递归过程中,每遇到一个原始数,计数器加1,用来统计个数。

  • 例程1在OJ中会显示超时,这是必然的,当n很大时,递归的过程就会很长,这主要源于其中会做大量的重复计算,每次计算h(n),都要重复计算h(1)....h(n/2),这样的问题在使用递归计算斐波那契数f(n)时,也会遇到,程序效率很低。解决的一个途径是使程序具有记忆功能,已计算出的数字就无需再次计算,直接使用即可。例程2使用数组实现了带记忆功能的递归,可以通过OJ系统。

  • 也可以使用递推的方法来解决问题:已知h(n)=1+h(1)+h(2)+...+h(n/2),这就是一个递归式,程序写起来很容易(见例程3),两层for循环就可完成,递推比起无记忆的递归来效率要高得多。例程1是指数级的时间复杂度,而例程3的时间复杂度为O(n2)

  • 问题可以进一步简化。通过对上面的公式进行推导可以发现:n为奇数时,h(n)=h(n-1),n为偶数时,h(n)=h(n-1)+h(n/2),看懂了吗,使用这两个公式,可以将时间复杂度降低到O(n),见例程4。

例程1

#include<iostream>
using namespace std;
int ans; //计数器
void dfs(int m){
ans++; //每出现一次原始数,ans++
for(int i=1; i<=m/2; i++){
dfs(i); //递归
}
}
int main(){
int n;
cin>>n;
dfs(n);
cout<<ans;
return 0;
}

例程2

#include<iostream>
using namespace std;
int h[1001]; //记忆数组,存储计算出的h[m]
void dfs(int m){
if(h[m]!=0) return; //有记忆,不再递归
h[m]=1; //无记忆,初始化为1,递归累加计算
for(int i=1; i<=m/2; i++){
dfs(i); //递归
h[m]+=h[i]; //累加
}
}
int main(){
int n;
cin>>n;
dfs(n);
cout<<h[n];
return 0;
}

例程3

#include<iostream>
using namespace std;
int h[1001];
int main(){
int n;
cin>>n;
h[1]=1; //初始化第一项h[1]
for(int s=2;s<=n;s++){ //对第s项
h[s]=1; //数字s自己算一个
for(int i=1;i<=s/2;i++) h[s]+=h[i];
}
cout<<h[n];
return 0;
}

例程4

#include<iostream>
using namespace std;
int main(){
int n;
cin>>n;
h[1]=1; //初始化第一项
for(int i=2; i<=n; i++){
h[i]=h[i-1]; //递推
if(i%2==0) h[i]+=h[i/2]; //i为偶数时
}
cout<<h[n];
return 0;
}

LFYZ-OJ ID: 1026 数的计数(数的计算)NOIP2001的更多相关文章

  1. ACM——数的计数

    http://acm.njupt.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1050 数的计数 时间限制(普通/Jav ...

  2. 【BZOJ 1026】 [SCOI2009]windy数

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 [题意] [题解] 数位Dp 设f[i][j]表示长度为i,第一位(也就是最高位 ...

  3. 数的计数(number)

    数的计数(number) 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n),先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理: (1)不作任何处理: (2)在它的 ...

  4. 九度OJ 1060:完数VS盈数 (数字特性)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5590 解决:2093 题目描述: 一个数如果恰好等于它的各因子(该数本身除外)子和,如:6=3+2+1.则称其为"完数" ...

  5. 九度oj 题目1060:完数VS盈数

    题目1060:完数VS盈数 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6461 解决:2426 题目描述: 一个数如果恰好等于它的各因子(该数本身除外)子和,如:6=3+2+1.则称其 ...

  6. 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...

  7. hive优化之——控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  8. centos系统查看系统版本、内核版本、系统位数、cpu个数、核心数、线程数

    centos查看系统版本 cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) 1)查看centos内核的版本: [root@loc ...

  9. Android 简单统计文本文件字符数、单词数、行数Demo

    做的demo是统计文本文件的字符数.单词数.行数的,首先呢,我们必须要有一个文本文件.所以我们要么创建一个文本文件,并保存,然后再解析:要么就提前把文本文件先放到模拟器上,然后检索到文本名再进行解析. ...

随机推荐

  1. Java调用windows命令

    JAVA调用windows的cmd命令 用起来会让程序变得更加简洁明了,非常实用. 核心就是使用 Runtime类. cmd的xcopy就有很强大的文件夹,文件处理功能. 下面就以xcopy来说明,如 ...

  2. Bootstrap -- 表格样式、表单布局

    Bootstrap -- 表格样式.表单布局 1. 表格的一些样式 举例: <!DOCTYPE html> <html> <head> <meta http- ...

  3. LeetCode算法题-Maximum Product of Three Numbers(Java实现)

    这是悦乐书的第275次更新,第291篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第143题(顺位题号是628).给定一个整数数组,从其中找出三个数,使得乘积最大.例如: ...

  4. java 常用工具整理

    mapUtil map操作工具类 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-collections4 ...

  5. springboot操作mongodb

    springboot操作mongodb 采用MongoRepository操作mongodb springboot版本2.1.2.RELEASE 注意的是:在运行应用程序时,会报错OSS Algori ...

  6. (四)Exploring Your Cluster

    The REST API Now that we have our node (and cluster) up and running, the next step is to understand ...

  7. 将docker镜像上传到docker hub

  8. Django create和save方法

    Django的模型(Model)的本质是类,并不是一个具体的对象(Object).当你设计好模型后,你就可以对Model进行实例化从而创建一个一个具体的对象.Django对于创建对象提供了2种不同的s ...

  9. PS对街拍女孩照片增加质感

    看到原图时,我的内心是抗拒的,灰蒙蒙毫无质感可言,手机app大概都拍得比这好看(捂脸笑哭). 大概是因为偏背光,光线暧昧不够强烈,且50 1.4这只镜头锐度还欠佳的缘故.所以平时3天修完图的我,这次拖 ...

  10. 安装appium桌面版和命令行版

    一 桌面版(打开很慢,常用于辅助元素定位) 1.官网下载window版本: 2.直接点击紫色图标即可打开   3.启动server 二  命令行版(打开很快,常用于执行脚本) 1.jdk 安装jdk并 ...