[再寄小读者之数学篇](2014-05-23 $\ln x-ax=0$ 有两个根时的估计)
已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.
证明: 由 $$\bex \ln x=ax,\quad g(x)\equiv \cfrac{\ln x}{x}=a \eex$$ 有两根及 $$\bex g'(x)=\cfrac{1-\ln x}{x^2}\sedd{\ba{ll} >0,&0<x<e\\ <0,&x>e \ea} \eex$$ $$\bex \lim_{x\to0}g(x)=-\infty,\quad g(e)=\cfrac{1}{e},\quad \lim_{x\to +\infty} g(x)=0 \eex$$ 知 $0<a<\cfrac{1}{e}$. 不妨设 $0<x_1<e<x_2<\infty$. 另外, 由 $$\beex \bea g(x_2)&=g(x_1)=g(e)+\int_e^{x_1} \cfrac{1-\ln t}{t^2}\rd t\\ &=g(e)+\int_e^{\cfrac{e^2}{x_1}} \cfrac{\ln s-1}{\cfrac{e^4}{s^2}}\cdot \cfrac{e^2}{-s^2}\rd s\quad\sex{t=\cfrac{e^2}{s}}\\ &=g(e)+\int_e^{\cfrac{e^2}{x_1}} \cfrac{1-\ln s}{e^2}\rd s\\ &<g(e)+\int_e^{\cfrac{e^2}{x_1}}\cfrac{1-\ln s}{s^2}\rd s\\ &=g\sex{\cfrac{e^2}{x_1}} \eea \eeex$$ 及 $g$ 在 $(e,\infty)$ 上的严格递减性知 $x_2>\cfrac{e^2}{x_1}$.
[再寄小读者之数学篇](2014-05-23 $\ln x-ax=0$ 有两个根时的估计)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- #018 C语言刷题 素数问题
今天做题学会了一个求素数的方法 总分 13 孪生素数 相差为2的两个素数称为孪生素数.例如,3与5,41与43等都是孪生素数.设计程序求出指定区间上的所有孪生素数对.区间上限和下限由键盘获取. 程序运 ...
- 英语口语练习系列-C21-美式幽默
1. 基础词汇 1.1 back [bæk] n. 后背 on the back 靠着背 sleep on the back 仰着睡 back of the chair 椅子的后背 stab sb. ...
- .NET ORM框架之NHibernate
这段时间一直使用NHibernate,今天抽空总结一下. 1.什么是NHibernate? NHibernate是一个面向.NET环境的对象/关系数据库映射工具.对象/关系数据库映射(object/r ...
- Android--图片轮播(banner)
使用步骤 Step 1.依赖banner Gradle dependencies{ compile 'com.youth.banner:banner:1.4.10' //最新版本 } 或者引用本地li ...
- Fabric动态增加组织【资料】
Fabric在启动之前需要生成Orderer的创世区块和channel的配置区块.也就是说在Fabric网络启动之前我们就必须定好了有哪些Org,而当Fabric已经跑起来之后,想要增加Org却是很麻 ...
- 使用Flame Graph进行系统性能分析
关键词:Flame Graph.perf.perl. FlameGraph是由BrendanGregg开发的一款开源可视化性能分析工具,形象的成为火焰图. 从底向上像火苗一样逐渐变小,也反映了相互之间 ...
- 迷茫<第二篇:回到老家湖南长沙>
2014年8月初,我买了回老家的火车票,当时没有买到坐票,卧铺贵了买不起,所以我就选择了站票,准备站回老家.我现在还记得我当时买的是T1列火车,北京西站到长沙火车站,全程16个小时.当时我就在火车上站 ...
- MySQL索引原理及慢查询优化(转自:美团tech)
背景 MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会 ...
- echo与print,var_dump()和print_r()的区别
1.echo 和 print 的区别 共同点:首先echo 和 print 都不是严格意义上的函数,他们都是 语言结构;他们都只能输出 字符串,整型跟int型浮点型数据.不能打印复合型和资源型数据: ...
- Linux(Ubuntu 16) 下Java开发环境的配置(三)------Mysql配置
前言 吐槽一句,如果在Ubuntu在默认情况下是只有最新的MySQL源的,即如果使用"sudo apt-get install mysql-server mysql-client " ...