已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.

证明: 由 $$\bex \ln x=ax,\quad g(x)\equiv \cfrac{\ln x}{x}=a \eex$$ 有两根及 $$\bex g'(x)=\cfrac{1-\ln x}{x^2}\sedd{\ba{ll} >0,&0<x<e\\ <0,&x>e \ea} \eex$$ $$\bex \lim_{x\to0}g(x)=-\infty,\quad g(e)=\cfrac{1}{e},\quad \lim_{x\to +\infty} g(x)=0 \eex$$ 知 $0<a<\cfrac{1}{e}$. 不妨设 $0<x_1<e<x_2<\infty$. 另外, 由 $$\beex \bea g(x_2)&=g(x_1)=g(e)+\int_e^{x_1} \cfrac{1-\ln t}{t^2}\rd t\\ &=g(e)+\int_e^{\cfrac{e^2}{x_1}} \cfrac{\ln s-1}{\cfrac{e^4}{s^2}}\cdot \cfrac{e^2}{-s^2}\rd s\quad\sex{t=\cfrac{e^2}{s}}\\ &=g(e)+\int_e^{\cfrac{e^2}{x_1}} \cfrac{1-\ln s}{e^2}\rd s\\ &<g(e)+\int_e^{\cfrac{e^2}{x_1}}\cfrac{1-\ln s}{s^2}\rd s\\ &=g\sex{\cfrac{e^2}{x_1}} \eea \eeex$$ 及 $g$ 在 $(e,\infty)$ 上的严格递减性知 $x_2>\cfrac{e^2}{x_1}$.

[再寄小读者之数学篇](2014-05-23 $\ln x-ax=0$ 有两个根时的估计)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. Thirft简单使用

    安装Thrift 到thrift官网下载thrift.exe http://thrift.apache.org/download 将thrift-0.10.0.exe复制到C:\Program Fil ...

  2. maven-assembly-plugin打包可执行的jar包

    pom.xml添加 <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</a ...

  3. springboot + mybatis +pageHelper分页排序

    今天下午写查出来的数据的排序,原来的数据没有排序,现在把排序功能加上...原来用的,是xml中的sql动态传参 ,,1个小数没有弄出来,果断放弃... 网上百度一下,发现用pageHelper  可以 ...

  4. python基础语法、数据结构、字符编码、文件处理 练习题

    考试范围 '''1.python入门:编程语言相关概念2.python基础语法:变量.运算符.流程控制3.数据结构:数字.字符串.列表.元组.字典.集合4.字符编码5.文件处理''' 考试内容 1.简 ...

  5. wxWidgets 和 QT 之间的选择

    (非原创,网络摘抄) 跨平台的C++ GUI工具库很多,可是应用广泛的也就那么几个,Qt.wxWidgets便是其中的翘楚这里把GTK+排除在外,以C实现面向对象,上手相当困难,而且Windows平台 ...

  6. Redis原理

    RESP协议 支持tcp协议.基本数据类型,比如数组,字符串等,也可支持其他的通信场景. 模拟redis接收传输过来的set数据 //ServerSocket监听6379端口模拟redis publi ...

  7. HNOI2019做题笔记

    代码比较长所以直接去LOJ看吧- 鱼(计算几何.向量) 比较套路的内容:枚举\(D\),对于其他所有点按照\(D\)极角排序,按照极角序枚举\(A\),这样垂直于\(AD\)的线也会以极角序旋转,可以 ...

  8. FM算法解析及Python实现

    1. 什么是FM? FM即Factor Machine,因子分解机. 2. 为什么需要FM? 1.特征组合是许多机器学习建模过程中遇到的问题,如果对特征直接建模,很有可能会忽略掉特征与特征之间的关联信 ...

  9. Scrapy中选择器的用法

    官方文档:https://doc.scrapy.org/en/latest/topics/selectors.html Using selectors Constructing selectors R ...

  10. Codeforces Round #498 (Div. 3)--E. Military Problem

    题意问,这个点的然后求子树的第i个节点. 这道题是个非常明显的DFS序: 我们只需要记录DFS的入DFS的时间,以及出DFS的时间,也就是DFS序, 然后判断第i个子树是否在这个节点的时间段之间. 最 ...