对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。如果某个正整数x满足:g(x)>g(i) 0<i<x
,则称x为反质数。例如,整数1,2,4,6等都是反质数。现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

  一个数N(1<=N<=2,000,000,000)。

Output

  不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

思路:对n分解质因数,是不会超过10个的,而且质因数个数不会超过30,通过反质数定义,可以dfs搜索10个素数的指数。

 #include<bits/stdc++.h>
using namespace std; int n;
int prime[];
int tot;
typedef long long ll;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=;i<=n;i++)
{
if(!v[i])prime[++tot] = i;
for(int j=i;j<=n/i;j++)
{
v[i*j] = ;
}
}
}
int tmp[];
ll ans;
int t_cnt; ll qpow(ll a,ll b)
{
ll ans = ;
ll base = a;
while(b)
{
if(b&)ans *= base;
base *= base;
b >>= ;
}
return ans;
} void dfs(int now,ll val,int cnt)
{
if(val > n)return;
if(now > )
{
if((cnt == t_cnt && val < ans)|| cnt > t_cnt)
{
ans = val;
t_cnt = cnt;
}
return;
}
for(int i=;i<=tmp[now-];i++)
{
tmp[now] = i;
ll tmp = val*qpow(prime[now],i);
dfs(now+,tmp,cnt*(i+));
if(tmp > n)break;
}
} int main()
{
ans = 0x3f3f3f3f3f3f3f3f;
t_cnt = ;
tot = ;
get_pri();
tmp[] = ;
scanf("%d",&n);
dfs(,,);
printf("%lld\n",ans);
}

反素数ant HYSBZ - 1053(数学+dfs)的更多相关文章

  1. bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 写了个打表程序. #include<iostream> #include& ...

  2. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  3. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  4. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

  5. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  6. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  7. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

  8. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

  9. BZOJ(8) 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4118  Solved: 2453[Submit][St ...

随机推荐

  1. mongoDB 文档操作_删

    mongoDB 文档删除 MySQL对比 mysql delete from table where ... mongo db.collection.deleteOne(query) 删除函数 del ...

  2. LOJ #2719. 「NOI2018」冒泡排序(组合数 + 树状数组)

    题意 给你一个长为 \(n\) 的排列 \(p\) ,问你有多少个等长的排列满足 字典序比 \(p\) 大 : 它进行冒泡排序所需要交换的次数可以取到下界,也就是令第 \(i\) 个数为 \(a_i\ ...

  3. Linux NTP时间同步服务

    NTP(Network Time Protocol,网络时间协议)是用来使网络中的各个计算机时间同步的一种协议.它的用途是把计算机的时钟同步到世界协调时UTC,其精度在局域网内可达0.1ms,在互联网 ...

  4. fzyzojP1635 -- 平均值

    做法大概有两种: 1.二分平均值,每个值减去平均值,求有没有一个区间的总和大于等于0 (类比,中位数是二分之后,比mid大的为1,小的为0,看有没有区间大于等于0这样) 最值问题——判定问题 单调队列 ...

  5. 分布式监控系统开发【day38】:监控数据如何画图(九)

    一.画图代码 1.收集处理数据 class GraphGenerator(object): ''' generate graphs ''' def __init__(self,request,redi ...

  6. DirectX11 With Windows SDK--16 流输出阶段

    前言 在上一章,我们知道了如何使用几何着色器来重新组装图元,比如从一个三角形分裂成三个三角形.但是为了实现更高阶的分形,我们必须要从几何着色器拿到输出的顶点.这里我们可以使用可选的流输出阶段来拿到顶点 ...

  7. java Concurrent并发容器类 小结

    Java1.5提供了多种并发容器类来改进同步容器的性能. 同步容器将所有对容器的访问都串行化,以实现他们的线程安全性.这种方法的代价是严重降低并发性,当多个线程竞争容器的锁时,吞吐量将严重减低.  一 ...

  8. 02 Redis关闭服务报错---(error) ERR Errors trying to SHUTDOWN. Check logs.

    127.0.0.1:6379> shutdown (error) ERR Errors trying to SHUTDOWN. Check logs. 1.在redis.conf中修改日志文件的 ...

  9. C#获取应用程序路径

    string s = Environment.CurrentDirectory; //需添加Forms.DLL s = System.Windows.Forms.Application.Startup ...

  10. css之自定义滚动条

    <div class="alertbox index-rulebox" style="display:none"> <div class=&q ...