题目描述

Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。

现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。

输入

第一行一个正整数t,表示数据组数。

对于每组数据,一行三个数n,p,q。

输出

对于每组数据输出一行一个实数,表示Alice胜利的概率,保留6位小数。

样例输入

1
1 0.5 0.5

样例输出

0.666667

提示

数据范围:
1<=t<=50
0.5<=p,q<=0.99999999
对于100%的数据 1<=n<=99999999

题解

概率dp

这题真是巨坑。。。

f[i]表示i块石头先投者获胜的概率,g[i]表示i块石头后投者获胜的概率。

易推出:

$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}$

$g[i]=\frac{q_0·f[i-1]+(1-q_0)·p_0·g[i-1]}{1-(1-p_0)·(1-q_0)}$

然而这里$p_0$和$q_0$都是目标概率,而题目中的p和q都是几率,

所以需要根据情况决定是否想要正面朝上。

根据方程的推导:

A想让自己获胜的概率最大,即让$f[i]$最大。

假设$g[i-1]-f[i-1]$不等于$0$,把$f[i]$的推导式展开,得:

$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}\\\ \ \ \ \ \ =\frac{(p_0+q_0-p_0·q_0)·f[i-1]+p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac{p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{p_0+q_0-p_0·q_0}{p_0(g[i-1]-f[i-1])}}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{1-q_0+\frac{q_0}{p_0}}{g[i-1]-f[i-1]}}$

显然当$g[i-1]-f[i-1]>0$时,$p_0$越大越好;当$g[i-1]-f[i-1]<0$时,$p_0$越小越好。

$q_0$的推导同理。

于是可以得到结论:

当f[i-1]<g[i-1]时,都想要正面朝上,$p_0=p$,$q_0=q$;

当f[i-1]>g[i-1]时,都不想要正面朝上,$p_0=1-p$,$q_0=1-q$。

但是n太大肿么办?

于是用到概率黑科技:

当n越来越大时,f[n]逐渐趋近于一个定值,而且题目中只要求保留6位小数。

所以就此题而言f[1000+k]可以近似等于f[1000]。

于是时间复杂度就降为O(1000T),可解。

#include <cstdio>
#include <cstring>
double f[1001] , g[1001];
int main()
{
int t;
scanf("%d" , &t);
while(t -- )
{
int n , i;
double p , q;
scanf("%d%lf%lf" , &n , &p , &q);
memset(f , 0 , sizeof(f));
memset(g , 0 , sizeof(g));
if(n > 1000)
n = 1000;
f[0] = 0;
g[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
f[i] = (p * g[i - 1] + (1 - p) * q * f[i - 1]) / (1 - (1 - p) * (1 - q));
g[i] = (q * f[i - 1] + (1 - q) * p * g[i - 1]) / (1 - (1 - p) * (1 - q));
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
}
printf("%.6lf\n" , f[n]);
}
return 0;
}

【bzoj2318】Spoj4060 game with probability Problem的更多相关文章

  1. 【BZOJ2318】Spoj4060 game with probability Problem 概率

    [BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...

  2. 【bzoj2318】Spoj4060 game with probability Problem 概率dp

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  3. 【BZOJ 2318】 2318: Spoj4060 game with probability Problem(概率DP)

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 371  Sol ...

  4. BZOJ2318: Spoj4060 game with probability Problem

    #include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #i ...

  5. BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )

    概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...

  6. 【CF954I】Yet Another String Matching Problem(FFT)

    [CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...

  7. 2318: Spoj4060 game with probability Problem

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 356  Sol ...

  8. Bzoj 2318 Spoj4060 game with probability Problem

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 524  Sol ...

  9. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

随机推荐

  1. 修改VMware虚拟机里面的显卡名称

    修改VMware虚拟机里面的显卡名称 现在有些蛋疼坑爹的游戏,会检测显卡的名称,如果其中有“Vmware”这类的字眼,就会提示程序在虚拟机中运行而拒绝执行(太不科学了嘛,我要是把我的实机驱动名称也改成 ...

  2. UVA - 11134 Fabled Rooks[贪心 问题分解]

    UVA - 11134 Fabled Rooks We would like to place n rooks, 1 ≤ n ≤ 5000, on a n × n board subject to t ...

  3. SpringMVC 返回json

    1.导入jackson的jar包 2.在方法体上加上@ResponseBody /** * 得到ProType的typeId,typeName列表 * 返回json * */ @RequestMapp ...

  4. Django调用JS、CSS、图片等静态文件

    zz 在下面的例子中,我们将media作为静态(CSS\JS\图片文件)文件的目录 方法一. 1.首先在settings.py文件中自定义参数 STATIC_PATH=’./media’ .(意为当前 ...

  5. http协议进阶(三)补充:报文首部

    之前写的关于报文首部的传送门: 报文首部:http://www.cnblogs.com/imyalost/p/5708445.html 通用首部字段:http://www.cnblogs.com/im ...

  6. thrift中的超时(timeout)坑

    最近在项目中采用thrift作为后台服务rpc框架,总体用下来性能还不错,跨语言特性使用起来也还行,但是也遇到了一些坑,其中之一就是超时问题(timeout),如果服务端些的某些业务场景耗时较长,th ...

  7. httpUrlConnection中文乱码

    public void getFeiInfo(String sessionId) throws IOException{ //发送的请求参数,发送的格式也是Json的 String requestSt ...

  8. LeetCode 笔记系列13 Jump Game II [去掉不必要的计算]

    题目: Given an array of non-negative integers, you are initially positioned at the first index of the ...

  9. 通过实战理解C语言精要——函数篇

      前言 本篇博客是对C语言函数部分的重点内容和细枝末节通过实战得到的经验的总结精炼,不涵盖C语言函数的全部内容,所有提炼内容均来自提炼与实战,阅读需要对函数部分有一定基础,可用于对C语言函数的理解提 ...

  10. 配置Windows下的PHP开发环境

    一.配置 Apache 开发环境: 二.配置 PHP 开发环境 配置 Apache 开发环境 0. 下载 Apache.由于官方只提供了源码包,我们要么自己编译要么使用别人提供的已经编译好的二进制包. ...