题目描述

Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。

现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。

输入

第一行一个正整数t,表示数据组数。

对于每组数据,一行三个数n,p,q。

输出

对于每组数据输出一行一个实数,表示Alice胜利的概率,保留6位小数。

样例输入

1
1 0.5 0.5

样例输出

0.666667

提示

数据范围:
1<=t<=50
0.5<=p,q<=0.99999999
对于100%的数据 1<=n<=99999999

题解

概率dp

这题真是巨坑。。。

f[i]表示i块石头先投者获胜的概率,g[i]表示i块石头后投者获胜的概率。

易推出:

$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}$

$g[i]=\frac{q_0·f[i-1]+(1-q_0)·p_0·g[i-1]}{1-(1-p_0)·(1-q_0)}$

然而这里$p_0$和$q_0$都是目标概率,而题目中的p和q都是几率,

所以需要根据情况决定是否想要正面朝上。

根据方程的推导:

A想让自己获胜的概率最大,即让$f[i]$最大。

假设$g[i-1]-f[i-1]$不等于$0$,把$f[i]$的推导式展开,得:

$f[i]=\frac{p_0·g[i-1]+(1-p_0)·q_0·f[i-1]}{1-(1-p_0)·(1-q_0)}\\\ \ \ \ \ \ =\frac{(p_0+q_0-p_0·q_0)·f[i-1]+p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac{p_0(g[i-1]-f[i-1])}{p_0+q_0-p_0·q_0}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{p_0+q_0-p_0·q_0}{p_0(g[i-1]-f[i-1])}}\\\ \ \ \ \ \ =f[i-1]+\frac1{\frac{1-q_0+\frac{q_0}{p_0}}{g[i-1]-f[i-1]}}$

显然当$g[i-1]-f[i-1]>0$时,$p_0$越大越好;当$g[i-1]-f[i-1]<0$时,$p_0$越小越好。

$q_0$的推导同理。

于是可以得到结论:

当f[i-1]<g[i-1]时,都想要正面朝上,$p_0=p$,$q_0=q$;

当f[i-1]>g[i-1]时,都不想要正面朝上,$p_0=1-p$,$q_0=1-q$。

但是n太大肿么办?

于是用到概率黑科技:

当n越来越大时,f[n]逐渐趋近于一个定值,而且题目中只要求保留6位小数。

所以就此题而言f[1000+k]可以近似等于f[1000]。

于是时间复杂度就降为O(1000T),可解。

#include <cstdio>
#include <cstring>
double f[1001] , g[1001];
int main()
{
int t;
scanf("%d" , &t);
while(t -- )
{
int n , i;
double p , q;
scanf("%d%lf%lf" , &n , &p , &q);
memset(f , 0 , sizeof(f));
memset(g , 0 , sizeof(g));
if(n > 1000)
n = 1000;
f[0] = 0;
g[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
f[i] = (p * g[i - 1] + (1 - p) * q * f[i - 1]) / (1 - (1 - p) * (1 - q));
g[i] = (q * f[i - 1] + (1 - q) * p * g[i - 1]) / (1 - (1 - p) * (1 - q));
if(f[i - 1] > g[i - 1])
p = 1 - p , q = 1 - q;
}
printf("%.6lf\n" , f[n]);
}
return 0;
}

【bzoj2318】Spoj4060 game with probability Problem的更多相关文章

  1. 【BZOJ2318】Spoj4060 game with probability Problem 概率

    [BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...

  2. 【bzoj2318】Spoj4060 game with probability Problem 概率dp

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  3. 【BZOJ 2318】 2318: Spoj4060 game with probability Problem(概率DP)

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 371  Sol ...

  4. BZOJ2318: Spoj4060 game with probability Problem

    #include<iostream> #include<algorithm> #include<cstring> #include<cstdio> #i ...

  5. BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )

    概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...

  6. 【CF954I】Yet Another String Matching Problem(FFT)

    [CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...

  7. 2318: Spoj4060 game with probability Problem

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 356  Sol ...

  8. Bzoj 2318 Spoj4060 game with probability Problem

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 524  Sol ...

  9. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

随机推荐

  1. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  2. 如何保证ArrayList线程安全

    一.继承Arraylist,然后重写或按需求编写自己的方法,这些方法要写成synchronized,在这些synchronized的方法中调用ArrayList的方法.   二:使用Collectio ...

  3. [No000076]用Eclipse编写python(配置PyDev插件)

    下载,安装python解释器 地址:https://www.python.org/downloads/ 下载,安装java jdk 地址:http://www.oracle.com/technetwo ...

  4. BZOJ2748[HAOI2012]音量调节

    Description 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都要改变一次音量.在演出开始之前,他已经做好了一个列表,里面写着在每首歌开始之前他想要改 ...

  5. Linux Linux程序练习十七

    小结:使用fputs()向文件写入数据,要想实时看到结果,需要使用fflush清空缓冲区 /* * 题目:编写一个守护进程,每隔3秒钟将当前时间写入文件time.log, * 要求:不能使用init_ ...

  6. JS组件系列——表格组件神器:bootstrap table(二:父子表和行列调序)

    前言:上篇 JS组件系列——表格组件神器:bootstrap table 简单介绍了下Bootstrap Table的基础用法,没想到讨论还挺热烈的.有园友在评论中提到了父子表的用法,今天就结合Boo ...

  7. ts 格式化日期输出

    功能 像C#中DateTime的ToString的格式化输出一样,在js/ts中输出格式化的日期字符串 网上很多正则的,不加分隔符就不行了,和C#的格式也不一样 刚接触js/ts没两月,可能会有问题. ...

  8. UML类图关系(泛化 、继承、实现、依赖、关联、聚合、组合)

    UML类图关系(泛化 .继承.实现.依赖.关联.聚合.组合) 继承.实现.依赖.关联.聚合.组合的联系与区别 分别介绍这几种关系: 继承 指的是一个类(称为子类.子接口)继承另外的一个类(称为父类.父 ...

  9. Gson解析json字符串

    // 解析传递过来的json字符串 JsonParser parser = new JsonParser(); JsonObject jsonObj = parser.parse(strJson).g ...

  10. 随便写一下看下效果。一个js问题

    (function(a){ console.log(a); var a = 10; function a(){} }(100)); 问:执行这段代码会输出什么.