题面

题解

图上的期望大部分是\(dp\),无向图的期望大部分是高斯消元

设\(f[i]\)表示走到点\(i\)的期望,\(d[i]\)表示\(i\)的度,\(to(i)\)表示\(i\)能到达的点集

所以\(f[i] = \sum\limits_{x \in to(i)} f[x] / d[x]\)

然后每个点能够列出这样的方程,直接高斯消元就可以了

代码

#include<bits/stdc++.h>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std; inline int read()
{
int data = 0, w = 1;
char ch = getchar();
while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data*w;
} const int maxn(510), maxm(250100);
struct edge { int next, to; } e[maxm << 1];
int head[maxn], e_num;
inline void add_edge(int from, int to) { e[++e_num] = {head[from], to}; head[from] = e_num; }
double a[maxn][maxn], ans[maxm], Ans, deg[maxn];
int n, m, from[maxm], to[maxm]; inline void Gauss()
{
for(RG int i = 1, k = i; i <= n; i++, k = i)
{
for(RG int j = k + 1; j <= n; j++) if(fabs(a[k][i]) < fabs(a[j][i])) k = j;
swap(a[i], a[k]);
for(RG int j = i + 1; j <= n + 1; j++) a[i][j] /= a[i][i];
a[i][i] = 1.;
for(RG int j = 1; j <= n; j++)
{
if(i == j) continue;
for(RG int k = i + 1; k <= n + 1; k++) a[j][k] -= a[j][i] * a[i][k];
a[j][i] = 0.;
}
}
} int main()
{
n = read(); m = read();
for(RG int i = 1; i <= m; i++)
{
from[i] = read(); to[i] = read();
add_edge(from[i], to[i]); deg[from[i]] += 1.;
add_edge(to[i], from[i]); deg[to[i]] += 1.;
}
for(RG int i = 1; i < n; i++)
{
for(RG int j = head[i]; j; j = e[j].next) if(e[j].to != n) a[i][e[j].to] += -1. / deg[e[j].to];
a[i][i] = 1;
}
a[n][n] = 1;
a[1][n + 1] = 1; Gauss();
for(RG int i = 1; i <= m; i++)
ans[i] = ((from[i] == n) ? 0 : a[from[i]][n + 1] / deg[from[i]]) + ((to[i] == n) ? 0 : a[to[i]][n + 1] / deg[to[i]]);
sort(ans + 1, ans + m + 1);
for(RG int i = 1; i <= m; i++) Ans += (m - i + 1) * ans[i];
printf("%.3lf\n", Ans);
return 0;
}

【HNOI2013】游走的更多相关文章

  1. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  2. [补档][Hnoi2013]游走

    [Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...

  3. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  4. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  5. P3232 [HNOI2013]游走 解题报告

    P3232 [HNOI2013]游走 题目描述 一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\). 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概 ...

  6. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  7. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  8. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  9. BZOJ3141 Hnoi2013 游走 【概率DP】【高斯消元】*

    BZOJ3141 Hnoi2013 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点 ...

  10. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

随机推荐

  1. Ubuntu安装 和 python开发

    在ubuntu上安装pycharm 可以好几种下载办法 1.pycharm之linux版本下载地址: https://download.jetbrains.8686c.com/python/pycha ...

  2. Skype for Business Server 2015 企业语音部署和配置

    Skype for Business Server 2015包含的企业语音功能可实现更丰富的通信和协作.例如,可以将企业语音部署配置为启用Skype for Business Server 2015客 ...

  3. vmware查看HBA卡、网卡驱动、firmware版本信息

    在 ESXi 5.x 中,swfw.sh 命令随 vm-support 支持包收集工具一起提供.swfw.sh 命令可用来识别连接到主机的硬件的固件和驱动程序版本.要运行此命令,请使用该路径: # / ...

  4. 跟我一起阅读Java源代码之HashMap(一)

    最近闲的很,想和大家一起学习并讨论下Java的一些源代码以及其实现的数据结构, 不是什么高水平的东西,有兴趣的随便看看 1. 为什么要用Map,以HashMap为例 很多时候我们有这样的需求,我们需要 ...

  5. Ext 向Ext.form.ComboBox()中添加列表的分类

    1.静态 [javascript] view plaincopy var staticComboBox = new Ext.form.ComboBox({   fieldLabel:'回访结果',   ...

  6. Javascript能做什么 不能做什么。

    JavaScript可以做什么?用JavaScript可以做很多事情,使网页更具交互性,给站点的用户提供更好,更令人兴奋的体验. JavaScript使你可以创建活跃的用户界面,当用户在页面间导航时向 ...

  7. 学习python第四天——Oracle查询

    3.子查询(难): 当进行查询的时候,发现需要的数据信息不明确,需要先通过另一个查询得到, 此查询称为子查询: 执行顺序:先执行子查询得到结果以后返回给主查询 组成部分: 1).主查询部分 2).子查 ...

  8. linux_bc命令

    bc 命令:     bc 命令是用于命令行计算器. 它类似基本的计算器. 使用这个计算器可以做基本的数学运算. 语法:  语法是      bc [命令开关]命令开关:      -c 仅通过编译. ...

  9. P2619 [国家集训队2]Tree I

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  10. 20155314 2016-2017-2 《Java程序设计》实验二 Java面向对象程序设计

    20155314 2016-2017-2 <Java程序设计>实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UM ...