P1477 [NOI2008]假面舞会

题目描述

一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。

今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。

为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。

参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。

栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具的编号。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。

由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。

输入输出格式

输入格式:

第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具的编号。相同的数对a, b 在输入文件中可能出现多次。

输出格式:

包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。

输入输出样例

输入样例#1: 复制

6 5
1 2
2 3
3 4
4 1
3 5
输出样例#1: 复制

4 4
输入样例#2: 复制

3 3
1 2
2 1
2 3
输出样例#2: 复制

-1 -1

说明

50%的数据,满足n ≤ 300, m ≤ 1000;

100%的数据,满足n ≤ 100000, m ≤ 1000000。


Solution

有思维难度而没有算法难度的奇奇怪怪的图论题==

分情况讨论八。

如果只有环的情况,明显就是所有环的长度取gcd是种类的最大值。如果又有环又有链,链实际上没用,只用判环就好。如果只有链,那么把所有链拼到一起,总长度就是种类数的最大值,最小值就是3-ans能被ans整除的最小值。

关于环,如果建出来的正图没有环,但是变成无向图是有环,如何去判断?就建反边,正边权为1,反边权为-1,正常跑dfs判环就可以叻。

【注意】环长度每次是取绝对值!!!(有可能是负的减正的)

还有一个有趣的事实:任何数和0取gcd结果都是它本身!!

Code

#include<bits/stdc++.h>
using namespace std; int n, m; struct Node {
int v, nex, w;
Node(int v = , int nex = , int w = ) :
v(v), nex(nex), w(w) { }
} Edge[]; int h[], stot;
void add(int u, int v, int d) {
Edge[++stot] = Node(v, h[u], d);
h[u] = stot;
} int gcd(int a, int b) {
return b == ? a : gcd(b, a % b);
} int vis[], dep[], ans, len, lenmi, lenma;
void dfs(int u, int deep) {
if(!vis[u]) {
vis[u] = ;
dep[u] = deep;
lenmi = min(lenmi, deep);
lenma = max(lenma, deep);
for(int i = h[u]; i; i = Edge[i].nex) {
int v = Edge[i].v;
dfs(v, deep + Edge[i].w);
}
} else ans = gcd(ans, abs(deep - dep[u]));
} int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i ++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v, ); add(v, u, -);
}
for(int i = ; i <= n; i ++)
if(!vis[i]) {
dfs(i, );
len += lenma - lenmi + ;
lenmi = lenma = ;
}
if(ans >= ) {
for(int i = ; i <= ans; i ++)
if(ans % i == ) {
printf("%d %d", ans, i);
break;
}
} else if(ans == && len >= ) printf("%d 3", len);
else printf("-1 -1");
return ;
}

【洛谷】1477:[NOI2008]假面舞会【图论】的更多相关文章

  1. 洛谷 P1477 [NOI2008]假面舞会

    题目链接 题目描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会. 今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具.每个面具都有一个编号,主办方 ...

  2. BZOJ1064 NOI2008 假面舞会 图论

    传送门 将一组关系\((A,B)\)之间连一条边,那么显然如果图中存在环长为\(len\)的环,那么面具的种数一定是\(len\)的因数. 值得注意的是这里环的关系除了\(A \rightarrow ...

  3. 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链

    luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...

  4. 图论 公约数 找环和链 BZOJ [NOI2008 假面舞会]

    BZOJ 1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1655  Solved: 798[Submit][S ...

  5. [BZOJ1064][Noi2008]假面舞会

    [BZOJ1064][Noi2008]假面舞会 试题描述 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择一 个自己喜欢 ...

  6. NOI2008假面舞会

    1064: [Noi2008]假面舞会 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 462[Submit][Status] ...

  7. 【BZOJ1064】[Noi2008]假面舞会 DFS树

    [BZOJ1064][Noi2008]假面舞会 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选择 ...

  8. 【图论 搜索】bzoj1064: [Noi2008]假面舞会

    做到最后发现还是读题比赛:不过还是很好的图论题的 Description 一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会.今年的面具都是主办方特别定制的.每个参加舞会的人都可以在入场时选 ...

  9. 洛谷 1262 间谍网络 Tarjan 图论

    洛谷 1262 图论 tarjan 并不感觉把这道题目放在图的遍历中很合适,虽然思路比较简单但是代码还是有点多的,, 将可收买的间谍的cost值设为它的价格,不可购买的设为inf,按照控制关系连图,T ...

随机推荐

  1. Mysql_Learning_Notes_mysql系统结构_2

    Mysql_Learning_Notes_mysql系统结构_2 三层体系结构,启动方式,日志类型及解析方法,mysql 升级 连接层 通信协议处理\线程处理\账号认证(用户名和密码认证)\安全检查等 ...

  2. 【hdu6334】【2018Multi-University-Training Contest04】Problem C. Problems on a Tree

    维护1边的联通块和2边的联通块,合并的时候直接启发式合并. cdqz的大爷好强啊. #include<bits/stdc++.h> #define lson (o<<1) #d ...

  3. 记录一款Unity VR视频播放器插件的开发

    效果图 先上一个效果图: 背景 公司最近在做VR直播平台,VR开发我们用到了Unity,而在Unity中播放视频就需要一款视频插件,我们调研了几个视频插件,记录两个,如下: Unity视频插件调研 网 ...

  4. Java基础82 jsp中的EL表达式(网页知识)

    1.EL表达式的作用 EL表达式的作用:向浏览器输出域对象中的变量值或者表达式计算结果.语法:${变量或者表达式} 注: Jsp的核心语法:jsp的表达式<%= %>和jsp的脚本< ...

  5. 洛谷P1455搭配购买

    传送门啦 这是强连通分量与背包的例题 需要注意的就是价值和价格两个数组不要打反了.. 另外 这是双向图!!! #include <iostream> #include <cstdio ...

  6. python包安装-centos7/windows

    1.修改pip源 临时使用: 可以在使用pip的时候在后面加上-i参数,指定pip源 eg: pip install scrapy -i https://pypi.tuna.tsinghua.edu. ...

  7. Kubernetes 部署kafka ACL(单机版)

    一.概述 在Kafka0.9版本之前,Kafka集群时没有安全机制的.Kafka Client应用可以通过连接Zookeeper地址,例如zk1:2181:zk2:2181,zk3:2181等.来获取 ...

  8. JAVA 转义字符串中的特殊字符

    package test; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Test { pu ...

  9. CVE-2012-4969

    Microsoft Internet Explorer ‘CMshtmlEd::Exec’函数释放后使用漏洞(CNNVD-201209-394) Microsoft Internet Explorer ...

  10. 树莓派GPIO控制RGB彩色LED灯

    树莓派GPIO通过PWM来控制RGB彩色LED灯,可以显示任何我们想要的颜色. RGB模块简介 这个RGB彩色LED里其实有3个灯,分别是红灯.绿灯和蓝灯.控制这三个灯分别发出不同强度的光,混合起来就 ...