Aizu 2249Road Construction 单源最短路变形《挑战程序设计竞赛》模板题
King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazingly, there are no roads in the kingdom now. Recently, he planned to construct roads between the capital and the cities, but it turned out that the construction cost of his plan is much higher than expected.
In order to reduce the cost, he has decided to create a new construction plan by removing some roads from the original plan. However, he believes that a new plan should satisfy the following conditions:
- For every pair of cities, there is a route (a set of roads) connecting them.
- The minimum distance between the capital and each city does not change from his original plan.
Many plans may meet the conditions above, but King Mercer wants to know the plan with minimum cost. Your task is to write a program which reads his original plan and calculates the cost of a new plan with the minimum cost.
Input
The input consists of several datasets. Each dataset is formatted as follows.
N M
u1 v1 d1 c1
.
.
.
uM vM dM cM
The first line of each dataset begins with two integers, N and M (1 ≤ N ≤ 10000, 0 ≤ M ≤ 20000). N and M indicate the number of cities and the number of roads in the original plan, respectively.
The following M lines describe the road information in the original plan. The i-th line contains four integers, ui, vi, di and ci (1 ≤ ui, vi ≤ N , ui ≠ vi , 1 ≤ di ≤ 1000, 1 ≤ ci ≤ 1000). ui , vi, di and ci indicate that there is a road which connects ui-th city and vi-th city, whose length is di and whose cost needed for construction is ci.
Each road is bidirectional. No two roads connect the same pair of cities. The 1-st city is the capital in the kingdom.
The end of the input is indicated by a line containing two zeros
separated by a space. You should not process the line as a dataset.
Output
For each dataset, print the minimum cost of a plan which satisfies the conditions in a line.
Sample Input
3 3
1 2 1 2
2 3 2 1
3 1 3 2
5 5
1 2 2 2
2 3 1 1
1 4 1 1
4 5 1 1
5 3 1 1
5 10
1 2 32 10
1 3 43 43
1 4 12 52
1 5 84 23
2 3 58 42
2 4 86 99
2 5 57 83
3 4 11 32
3 5 75 21
4 5 23 43
5 10
1 2 1 53
1 3 1 65
1 4 1 24
1 5 1 76
2 3 1 19
2 4 1 46
2 5 1 25
3 4 1 13
3 5 1 65
4 5 1 34
0 0
Output for the Sample Input
3
5
137
218
题目大意:
给出若干个建筑之间的一些路,每条路都有对应的长度和需要的花费,问在保证源点1到其他个点的距离最短的情况下,最少的花费是多少.
解题思路:
又把《挑战程序设计竞赛》上最短路章节好好看了遍,发现这题把板子变一点点就可以了 TwT,训练赛的时候听说同级有人用vector写出来了,太强辣!!
AC代码:
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <string.h>
#include <iostream>
#include<algorithm>
#include <queue>
#include <vector>
#include<string>
//******************************************************
#define lrt (rt*2)
#define rrt (rt*2+1)
#define LL long long
#define inf 0x3f3f3f3f
#define pi acos(-1.0)
#define exp 1e-8
const double temp=(+sqrt())/;
//***************************************************
#define eps 1e-8
#define inf 0x3f3f3f3f
#define INF 2e18
#define LL long long
#define ULL unsigned long long
#define PI acos(-1.0)
#define pb push_back
#define mk make_pair #define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define SQR(a) ((a)*(a))
#define Unique(a) sort(all(a)),a.erase(unique(all(a)),a.end())
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define min4(a,b,c,d) min(min(a,b),min(c,d))
#define max4(a,b,c,d) max(max(a,b),max(c,d))
#define max5(a,b,c,d,e) max(max3(a,b,c),max(d,e))
#define min5(a,b,c,d,e) min(min3(a,b,c),min(d,e))
#define Iterator(a) __typeof__(a.begin())
#define rIterator(a) __typeof__(a.rbegin())
#define FastRead ios_base::sync_with_stdio(0);cin.tie(0)
#define CasePrint pc('C'); pc('a'); pc('s'); pc('e'); pc(' '); write(qq++,false); pc(':'); pc(' ')
#define vi vector <int>
#define vL vector <LL>
#define For(I,A,B) for(int I = (A); I < (B); ++I)
#define rFor(I,A,B) for(int I = (A); I >= (B); --I)
#define Rep(I,N) For(I,0,N)
using namespace std;
const int maxn=1e5+;
typedef pair<int, int>P;
struct edge
{
int to,d,cost;
};
int n,m,d[maxn],sum[maxn];
vector<edge>G[maxn];
void Dijkstra(int s)
{
priority_queue<P,vector<P>,greater<P> > que;
fill(d,d+n+,inf);
d[s]=;
que.push(P(,s));
while(!que.empty())
{
P p=que.top(); que.pop();
int v=p.second;
if(d[v]<p.first) continue;
for(int i=;i<G[v].size();i++)
{
edge e=G[v][i];
if(d[e.to]>=d[v]+e.d)
{
if(d[e.to]==d[v]+e.d) sum[e.to]=min(sum[e.to],e.cost);
else sum[e.to]=e.cost;
d[e.to]=d[v]+e.d;
que.push(P{d[e.to],e.to});
}
} }
}
int main()
{
while(cin>>n>>m)
{
if(m+n==) break;
int u,v,dis,c;
memset(sum,,sizeof(sum));
for(int i=;i<=n;i++) G[i].clear();
for(int i=;i<m;i++)
{
scanf("%d %d %d %d",&u,&v,&dis,&c);
G[u].push_back(edge{v,dis,c});
G[v].push_back(edge{u,dis,c});
}
Dijkstra();
int ans=;
for(int i=;i<=n;i++)
{
ans+=sum[i];
}
cout<<ans<<endl;
}
return ;
}
Aizu 2249Road Construction 单源最短路变形《挑战程序设计竞赛》模板题的更多相关文章
- 紫书 习题 11-7 UVa 10801 (单源最短路变形)
把每个电梯口看作一个节点, 然后计算边的权值的时候处理一下, 就ok了. #include<cstdio> #include<vector> #include<queue ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- 单源最短路_SPFA_C++
当我们需要求一个点到其它所有点的最短路时,我们可以采用SPFA算法 代码特别好写,而且可以有环,但是不能有负权环,时间复杂度是O(α(n)n),n为边数,α(n)为n的反阿克曼函数,一般小于等于4 模 ...
- 【UVA1416】(LA4080) Warfare And Logistics (单源最短路)
题目: Sample Input4 6 10001 3 21 4 42 1 32 3 33 4 14 2 2Sample Output28 38 题意: 给出n个节点m条无向边的图,每条边权都为正.令 ...
- 【算法系列学习】Dijkstra单源最短路 [kuangbin带你飞]专题四 最短路练习 A - Til the Cows Come Home
https://vjudge.net/contest/66569#problem/A http://blog.csdn.net/wangjian8006/article/details/7871889 ...
- 模板C++ 03图论算法 1最短路之单源最短路(SPFA)
3.1最短路之单源最短路(SPFA) 松弛:常听人说松弛,一直不懂,后来明白其实就是更新某点到源点最短距离. 邻接表:表示与一个点联通的所有路. 如果从一个点沿着某条路径出发,又回到了自己,而且所经过 ...
- 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结
刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...
随机推荐
- Jmeter中的XPath Assertion
XPath 是一门在 XML 文档中查找信息的语言.XPath 可用来在 XML 文档中对元素和属性进行遍历. XPath 是 W3C XSLT 标准的主要元素,并且 XQuery 和 XPointe ...
- OSGi 系列(一)之什么是 OSGi :Java 语言的动态模块系统
OSGi 系列(一)之什么是 OSGi :Java 语言的动态模块系统 OSGi 的核心:模块化.动态.基于 OSGi 就可以模块化的开发 java 应用,模块化的部署 java 应用,还可以动态管理 ...
- MySQL相关知识总结
1. 显示所有表 show tables; 还有information_schema数据库里面有tables表,记录了所有表信息 use information_schema; select * fr ...
- Linux编程规范
1)在使用C语言进行编程时,源文件都必须加---文件头 /******************************************************** *文件名:test.c *创 ...
- PLSQL 块demo
DECLARE v_servid NUMBER(16); v_stdno VARCHAR2(30); BEGIN FOR i IN (SELECT rownum rn, t.* ...
- 如何查看路由器的mac和计算机的mac
如何查看路由器的mac和计算机的mac 一.查看路由器的mac 方法一: 直接看路由器的背面,如下图,即可看到MAC地址 打开命令提示符窗口,输入ipconfig,找到网关地址,如192.168. ...
- 2018.09.30 bzoj2288:生日礼物(贪心+线段树)
传送门 线段树经典题目. 每次先找到最大子段和来更新答案,然后利用网络流反悔退流的思想把这个最大字段乘-1之后放回去. 代码: #include<bits/stdc++.h> #defin ...
- UVa 1638 Pole Arrangement (递推或DP)
题意:有高为1,2,3...n的杆子各一根排成一行,从左边能看到L根,从右边能看到R根,求杆子的排列有多少种可能. 析:设d(i, j, k)表示高度为1-i的杆子排成一行,从左边看到j根,从右边看到 ...
- sql左外连接、右外连接、group by、distinct(区别)、intersect(交叉)、通配符、having
连接条件可在FROM或WHERE子句中指定,建议在FROM子句中指定连接条件.WHERE和HAVING子句也可以包含搜索条件,以进一步筛选连接条件所选的行. 连接可分为以下几类 ...
- hdu 2845 Beans 2016-09-12 17:17 23人阅读 评论(0) 收藏
Beans Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...