1、MM 算法:

  MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值。 MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算法”,取决于需要的优化是最大化还是最小化。 MM本身不是算法,而是一种如何构造优化算法的描述。

  MM算法的思想是不直接对目标函数求最优化解,转而找到一个目标函数的替代函数,对这个替代函数求解。每迭代一次,根据所求解构造用于下一次迭代的新的替代函数,然后对新的替代函数最优化求解得到下一次迭代的求解。通过多次迭代,可以得到越来越接近目标函数最优解的解。

  (1)目标函数最小化问题:

    此时,MM算法具体为 majorize-minimize MM 算法。思想是,每次迭代找到一个目标函数的上界函数,求上界函数的最小值。

  (2)目标函数最大化问题:

    此时,MM算法具体为  minorize maximize MM 算法。思想是,每次迭代找到一个目标函数的下界函数,求下界函数的最大值。

2、EM 算法:

  EM算法是机器学习中常用到的优化算法。EM算法可以被看作是MM算法的一个特例。

   然而,在EM算法中通常涉及到条件期望值,而在MM算法中,凸性和不等式是主要的焦点,并且在大多数情况下更容易理解和应用。

EM 算法的目标是:找到具有潜在变量(隐含变量)的模型的最大似然解。

【Reference】

1. A Tutorial on MM Algorithms.  David R Hunter &Kenneth Lange

2. MM algorithms for generalized Bradley-Terry models.  David R. Hunter (A Psychological Model for Consumption Prediction  cites it)

3. Wiki :MM algorithm

MM 算法与 EM算法概述的更多相关文章

  1. 机器学习优化算法之EM算法

    EM算法简介 EM算法其实是一类算法的总称.EM算法分为E-Step和M-Step两步.EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法. EM算法的思想和过程 E ...

  2. Python实现机器学习算法:EM算法

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...

  3. 【机器学习】K-means聚类算法与EM算法

    初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类.由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定 ...

  4. K-means聚类算法与EM算法

    K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般. 聚类属于无监督学习.在聚类问题中,给我们的训练样本是,每个,没有了y. K-means算法是将 ...

  5. 机器学习十大算法之EM算法

    此文已由作者赵斌授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 由于目前论坛的Markdown不支持Mathjax,数学公式没法正常识别,文章只能用截图上传了...     ...

  6. EM算法(4):EM算法证明

    目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过 ...

  7. [MCSM]随机搜索和EM算法

    1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书 ...

  8. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  9. EM算法及其推广

    概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation): ...

随机推荐

  1. tcp_client.c tcp_server.c

    #include <stdlib.h> #include <stdio.h> #include <errno.h> #include <string.h> ...

  2. Python中filter、map、reduce、lambda 的用法

    Python内置了一些非常有趣但非常有用的函数,充分体现了Python的语言魅力! filter(function, sequence):对sequence中的item依次执行function(ite ...

  3. AT&amp;T汇编语言——简单实例及工具演示

    今天就来用详细实例代码来运用一下昨天所说的仅仅个工具的使用方法吧 这几个实例基本的目的是来熟悉一下汇编相关工具的使用方法及应用一下昨天刚说的汇编程序模板. 我们用到的工具主要有as,ld,gcc,gd ...

  4. Ext 弹出窗体显示到iframe之外

    主要是这句话 var _win = new top.Ext.Window({});即可完成需要功能 var _win = new top.Ext.Window({           title: ' ...

  5. HTML-<td> 标签的 valign 属性

    <html> <body> <table border="1" style="height:200px"> <tr&g ...

  6. 盘点linux系统中的12条性能调优命令。

    导读 性能调优一直是运维工程师最重要的工作之一,如果您所在的生产环境中遇到了系统响应速度慢,硬盘IO吞吐量异常,数据处理速度低于预期值的情况,又或者如CPU.内存.硬盘.网络等系统资源长期处于耗尽的状 ...

  7. LINUX下的Mail服务器的搭建

    电子邮件是因特网上最为流行的应用之一.如同邮递员分发投递传统邮件一样,电子邮件也是异步的,也就是说人们是在方便的时候发送和阅读邮件的,无须预先与别人协同.与传统邮件不同的是,电子邮件既迅速,又易于分发 ...

  8. Bootstrap3实现的响应式幻灯滑动效果个人作品集/博客网站模板

    ​在线演示 本地下载 如果你想学习如何开发和使用的话,请参考我们免费的课程: Bootstrap3开发滑动风格的博客网站模板

  9. oracle 给用户赋表空间

    alter user fortune_test quota unlimited on data01;

  10. boost::tie()和boost::variant()解说

    #include<iostream> #include<boost/tuple/tuple.hpp> #include<boost/variant.hpp> #in ...