L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE)

L2范数损失函数,也被称为最小平方误差(LSE)

L2损失函数 L1损失函数
不是非常的鲁棒(robust) 鲁棒
稳定解 不稳定解
总是一个解 可能多个解

鲁棒性

最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值。如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择。

L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整模型来最小化误差。如果这个样本是一个异常值,模型就需要调整以适应单个的异常值,这会牺牲许多其它正常的样本,因为这些正常样本的误差比这单个的异常值的误差小。

稳定性

最小绝对值偏差方法的不稳定性意味着,对于数据集的一个小的水平方向的波动,回归线也许会跳跃很大。

相反地,最小平方法的解是稳定的,因为对于一个数据点的任何微小波动,回归线总是只会发生轻微移动

总结

MSE对误差取了平方,如果存在异常值,那么这个MSE就很大。

MAE更新的梯度始终相同,即使对于很小的值,梯度也很大,可以使用变化的学习率。MSE就好很多,使用固定的学习率也能有效收敛。

总而言之,处理异常点时,L1损失函数更稳定,但它的导数不连续,因此求解效率较低。L2损失函数对异常点更敏感,但通过令其导数为0,可以得到更稳定的封闭解。

Huber

l1和l2都存在的问题:

若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。

那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150,因为模型会按中位数来预测;

MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。

这些情况下最简单的办法是对目标变量进行变换。而另一种办法则是换一个损失函数,这就引出了下面要讲的第三种损失函数,即Huber损失函数。

Huber损失,平滑的平均绝对误差

Huber损失对数据中的异常点没有平方误差损失那么敏感。

本质上,Huber损失是绝对误差,只是在误差很小时,就变为平方误差。误差降到多小时变为二次误差由超参数δ(delta)来控制。当Huber损失在[0-δ,0+δ]之间时,等价为MSE,而在[-∞,δ]和[δ,+∞]时为MAE。

Huber损失结合了MSE和MAE的优点,对异常点更加鲁棒。

L1、L2损失函数、Huber损失函数的更多相关文章

  1. 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss

    回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明: ...

  2. 机器学习之正则化【L1 & L2】

    前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...

  3. 正则化 L1 L2

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...

  4. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  5. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  6. L0/L1/L2范数的联系与区别

    L0/L1/L2范数的联系与区别 标签(空格分隔): 机器学习 最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0.L1.L2范数的联系与区别. L0范数 L0范数表示 ...

  7. 机器学习 - 正则化L1 L2

    L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...

  8. 阅读ARM Memory(L1/L2/MMU)笔记

    <ARM Architecture Reference Manual ARMv8-A>里面有Memory层级框架图,从中可以看出L1.L2.DRAM.Disk.MMU之间的关系,以及他们在 ...

  9. L1&L2 Regularization的原理

    L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现 ...

随机推荐

  1. SQL Server索引管理之六大铁律

    索引是以表列为基础的数据库对象.索引中保存着表中排序的索引列,并且纪录了索引列在数据库表中的物理存储位置,实现了表中数据的逻辑排序.通过索引,可以加快数据的查询速度和减少系统的响应时间;可以使表和表之 ...

  2. SQL Server 2005 的动态管理视图DMV和函数DMF

    优化 的动态管理视图DMV和函数DMF SQL Server 05提供了动态管理视图Dynamic Management Views和函数 Functions,方便了我们对系统运行情况的监控,故障诊断 ...

  3. PWA 应用

    1. 使用例子,vue官网,在手机浏览器器打开时,保存在桌面那个应用.还有饿了么网站也是PWA应用.

  4. MySQL查询缓存详解(总结)

    MySQL查询缓存详解(总结) 一.总结 一句话总结: mysql查询缓存还是可以用用试一试,但是更推荐分布式,比如redis/memcache之流,将数据库中查询的数据和查询语句以键值对的方式存进分 ...

  5. 阿里云使用ssl免费证书

    购买免费证书 购买之后 申请证书 该域名必须添加一条TXT记录 根据提示添加记录 下载证书 我用的nginx做的映射,所以下载nginx nginx安装自行百度 将下载的文件解压到nginx目录下(创 ...

  6. jmeter添加自定义扩展函数之图片base64

    原文连接:---------https://www.cnblogs.com/qiaoyeye/p/7218770.html----------- 打开eclipse,新建maven工程,在pom中引用 ...

  7. redis 服务器端安装(三)

    redis 服务器端安装(三) Redis is an open source, BSD licensed, advanced key-value store. It is often referre ...

  8. Mr. Panda and Crystal(最短路+完全背包)

    http://codeforces.com/gym/101206/attachments 题意: T组输入,每组给出m,n,k,m为能量总数,n为水晶种类数,k为合成方案数.有的水晶可以用能量制造,有 ...

  9. fabric && cita 调研对比

    fabric && cita 调研 总结 若计划完全依赖上游的基础功能而不做任何改造,建议选择 fabric:否则,应选择 cita,针对自身业务场景进行持续优化. 一.功能 1.可扩 ...

  10. django 视图与网址

    我是一个新手,内容粗糙,望大家多多指点.在这里我只是总结自身所学. 视图与网址 操作文件:urls.py.views.py urls.py 作用:用于处理前台的链接(如前台访问:127.0.0.1:8 ...