stack() unstack()函数
总结:
1.stack: 将数据的列索引转换为行索引(列索引可以简单理解为列名)
2.unstack:将数据的行索引转换为列索引
3.stack和unstack默认操作为最内层,可以用level参数指定操作层.
4.stack和unstack默认旋转轴的级别将会成果结果中的最低级别(最内层)
5.stack转换dataframe时,若只有一层列索引则转换后的类型为series,否则为dataframe
unstack转换dataframe时,若只有一层行索引,情况同上
import pandas as pd
df = pd.DataFrame({ '类别':['水果'] * 3 + ['蔬菜'] * 3 ,
'名称':['苹果','梨','杏','菠菜','黄瓜','茄子'],
'价格':[7,8,9,10,11,12]})
print(df)
print(df.stack())
# 如下实现了行索引是类别,列索引是名称,交点处是价格
df.set_index(['类别','名称'], inplace=True)
print(df.unstack())
# 类别 名称 价格
# 0 水果 苹果 7
# 1 水果 梨 8
# 2 水果 杏 9
# 3 蔬菜 菠菜 10
# 4 蔬菜 黄瓜 11
# 5 蔬菜 茄子 12
# 0 类别 水果
# 名称 苹果
# 价格 7
# 1 类别 水果
# 名称 梨
# 价格 8
# 2 类别 水果
# 名称 杏
# 价格 9
# 3 类别 蔬菜
# 名称 菠菜
# 价格 10
# 4 类别 蔬菜
# 名称 黄瓜
# 价格 11
# 5 类别 蔬菜
# 名称 茄子
# 价格 12
# dtype: object
# 价格
# 名称 杏 梨 苹果 茄子 菠菜 黄瓜
# 类别
# 水果 9.0 8.0 7.0 NaN NaN NaN
# 蔬菜 NaN NaN NaN 12.0 10.0 11.0
6 unstack对series做转换时,原先的行索引会消失,对Dataframe做转换时,不会消失
import pandas as pd
df = pd.DataFrame({ '类别':['水果'] * 3 + ['蔬菜'] * 3 ,
'名称':['苹果','梨','杏','菠菜','黄瓜','茄子'],
'价格':[7,8,9,10,11,12]})
print(df)
# 注意当对series类型做unstack()的时候,原先的行索引会消失
# 但对Dataframe类型做unstack()的时候,不会消失
# 会消失
print(df.set_index(['名称','类别'])['价格'].unstack())
# 不消失
print(df.set_index(['名称','类别']).unstack())
print(df.set_index(['名称','类别'])[['价格']].unstack())
# 价格 名称 类别
# 0 7 苹果 水果
# 1 8 梨 水果
# 2 9 杏 水果
# 3 10 菠菜 蔬菜
# 4 11 黄瓜 蔬菜
# 5 12 茄子 蔬菜
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
# 价格
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
# 价格
# 类别 水果 蔬菜
# 名称
# 杏 9.0 NaN
# 梨 8.0 NaN
# 苹果 7.0 NaN
# 茄子 NaN 12.0
# 菠菜 NaN 10.0
# 黄瓜 NaN 11.0
参考: https://www.cnblogs.com/bambipai/p/7658311.html
7 通俗的说unstack()是把索引从左边到上边,stack()是从上边到左边.下面是把多重索引变为单重索引的方法.
import pandas as pd
a = pd.DataFrame({ 'id':['j','p','p','s'],
'RESULT_STRING':[1,2,3,4],
'values_max':[8,9,9,8],
'values_min':[5,5,5,5]
})
print(a)
print(a.set_index(['id','RESULT_STRING']).unstack())
r = a.set_index(['id','RESULT_STRING']).unstack().reset_index()
print(r)
# 由于是多重索引,把列名改成单重,更容易后序处理,这里把两个列名合并了.
r.columns = [x[0]+str(x[1]) for x in r.columns]
print(r)
# id RESULT_STRING values_max values_min
# 0 j 1 8 5
# 1 p 2 9 5
# 2 p 3 9 5
# 3 s 4 8 5
# values_max values_min
# RESULT_STRING 1 2 3 4 1 2 3 4
# id
# j 8.0 NaN NaN NaN 5.0 NaN NaN NaN
# p NaN 9.0 9.0 NaN NaN 5.0 5.0 NaN
# s NaN NaN NaN 8.0 NaN NaN NaN 5.0
# id values_max values_min
# RESULT_STRING 1 2 3 4 1 2 3 4
# 0 j 8.0 NaN NaN NaN 5.0 NaN NaN NaN
# 1 p NaN 9.0 9.0 NaN NaN 5.0 5.0 NaN
# 2 s NaN NaN NaN 8.0 NaN NaN NaN 5.0
# id values_max1 values_max2 ... values_min2 values_min3 values_min4
# 0 j 8.0 NaN ... NaN NaN NaN
# 1 p NaN 9.0 ... 5.0 5.0 NaN
# 2 s NaN NaN ... NaN NaN 5.0
#
# [3 rows x 9 columns]
参考: https://www.jb51.net/article/150975.htm
ttt
stack() unstack()函数的更多相关文章
- python pandas stack和unstack函数
在用pandas进行数据重排时,经常用到stack和unstack两个函数.stack的意思是堆叠,堆积,unstack即"不要堆叠",我对两个函数是这样理解和区分的. 常见的数据 ...
- 第五课: - Stack / Unstack / Transpose函数
第 5 课 我们将简要介绍 stack 和 unstack 以及 T (Transpose)函数. 在用pandas进行数据重排时,经常用到stack和unstack两个函数.stack的意思是堆 ...
- TensorFlow tensor张量拼接concat - split & stack - unstack
TensorFlow提供两种类型的拼接: tf.concat(values, axis, name='concat'):按照指定的已经存在的轴进行拼接 tf.stack(values, axis=0, ...
- tf.unstack()、tf.stack()
tf.unstack 原型: unstack( value, num=None, axis=0, name='unstack' ) 官方解释:https://tensorflow.google.cn/ ...
- 数据重塑图解—Pivot, Pivot-Table, Stack and Unstack
Pivot pivot函数用于创建一个新的派生表,该函数有三个参数:index, columns和values.你需要在原始表中指定这三个参数所对定的列名,接下来pivot函数会创建一个新的表格,其中 ...
- pandas.DataFrame的pivot()和unstack()实现行转列
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings impor ...
- tf.unstack\tf.unstack
tf.unstack 原型: unstack( value, num=None, axis=0, name='unstack' ) 官方解释:https://tensorflow.google.cn/ ...
- python pivot() 函数
以下为python pandas 库的dataframe pivot()函数的官方文档: Reshape data (produce a “pivot” table) based on column ...
- 笔记:程序内存管理 .bss .data .rodata .text stack heap
1.未初始化的全局变量(.bss段) bss段用来存放 没有被初始化 和 已经被初始化为0 的全局变量.如下例代码: #include<stdio.h> int bss_array[102 ...
随机推荐
- 使用SQL语法来查询Elasticsearch:Elasticsearch-SQL插件
简介 Elasticsearch-SQL是Elasticsearch的一个插件,它可以让我们通过类似SQL的方式对Elasticsearch中的数据进行查询.项目地址是:https://github. ...
- CSS中的伪类和为伪元素
伪类: 伪元素:
- C++ md5类,封装好
在网上看到很多md5类,不过封好的很少,我就在网上看到一篇把他写的封装 头文件 #ifndef _MD5_H #define _MD5_H #pragma warning(disable:4786)/ ...
- 关于Mysql 修改密码的记录
初次安装后完毕,使用管理员身份进入cmd界面, 输入" mysql -u root -p",出现"Enter password:",直接回车输入" s ...
- 用HTTP核心模块配置一个静态Web服务器
静态Web服务器的主要功能由ngx_http_core_module模块(HTTP框架的主要成员)实现与core模块类似,可以根据相关模块(如ngx_http_gzip_filter_module.n ...
- pandas读取Excel文件
In [7]: import pandas as pd filname = 'ch02数据导入\\student.xlsx' data = pd.read_excel(filname) data Ou ...
- Linux之目录配置
Linux目录配置标准:FHS 主要目的,希望让用户可以了解到已安装软件通常放置于哪个目录下. FHS定义了三层主目录:/./usr./var 1. /(root,根目录) (1)根目录与开机.还原. ...
- 最小可观(Minimal Observability Problem in Conjunctive Boolean Networks)
论文链接 1. 什么是 conjunctive Boolean network (CBN) 仅仅包含and运算. 下面这个式子为恒定更新函数 2. 什么是可观 定义在时刻k是CBN的状态为 X(k) ...
- uboot if_changed函数
u-boot编译过程分析 u-boot.lds: $(LDSCRIPT) prepare FORCE $(call if_changed_dep,cpp_lds) u-boot: $(u-boot-i ...
- 做股票软件用的各种k线图
这是各种k线图地址: http://echarts.baidu.com/echarts2/doc/example.html 个人公众号谢谢各位老铁支持 本人qq群也有许多的技术文档,希望可以为你提供一 ...