二模09day1解题报告
T1.词编码(word)
给出一些原长为n的01串经过变化后的串求原串。原串的特点是:各个1的位置号和%(n+1)==0
变法(只取其一):
- 改一个0为1
- 删一个
- 加一个
- 不变。
其中2优先考虑位置靠左的,然后优先考虑0
分类讨论加模拟,但是需要优化。现求出sum[i]为i以后的1的个数,ans[i]为i以后的位置和,这样一个后缀和(姑且这么叫)的优化就可以过了。
T2.笨笨粉刷匠(draw)
给出n块m个单位长的木板和t次粉刷,有0,1两种颜色。给出每个单位的正确颜色,且每个单位只能被刷一次。求最多刷对几块。
明显的dp。考虑到每个单位只能刷一次,而且数据范围限制,不能考虑一般的区间dp。先对每块木板处理,f[i][j]表示前i个单位分为j块的最优解,best[i][j]表示i到j之间0的个数和1的个数的较大值。
f[i][j]=max(f[i-1][j],f[k][j-1]+best[k+1][i])
然后就可以处理n块木板了。g[i][j]表示前i块木板刷j次的最大值。
g[i][j]=max(g[i-1][k]+f[i][m][i-k])
输出g[n][t].
T3.笨笨的电话网络(phone)
N个点,p条边,求最短路(而且代价为最大边的权值)(但是其中k条权值可视为0)。
首先肯定有一个最短路模型,但是就最短路肯定处理不了。。。
然后可以二分答案mid,把所有权值<=mid的边全都取来,然后spfa,然后做1到N的最短路(把已经选的边权值看做0,其他看做1),如果<=k表示可行。
然后输出就好了。
二模09day1解题报告的更多相关文章
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- 二模14day1解题报告
注:Index数☞由4,7组成的十进制数. T1.全排列(permutation) 求n个数的第k个排列中,有多少个Index位置上是Index数. 由于k的范围比较小,n的范围比较大(都是109), ...
- 二模12day2解题报告
T1.笨笨玩糖果(sugar) 有n颗糖,两个人轮流取质数颗糖,先取不了的(0或1)为输,求先手能否必胜,能,输出最少几步肯定能赢:不能,输出-1. 一开始天真的写了一个dp,f[i]表示i颗糖最少取 ...
- 二模01day1解题报告
T1.音量调节(changingsounds) 有n个物品的背包(有点不一样,每个物品必须取),给出初始价值,物品价值可正可负(就是两种选择嘛),求可能的最大价值,不可能(<0或>maxs ...
- 二模15day1解题报告
T1.合并序列(minval) 给出长为 n的AB两个序列求两两相加中最小的n个. 据说有证明(在蓝书上,优先队列部分)先把A[1~n]+b[1]入队,然后每取一个a[x]+b[y]就把a[x]+b[ ...
- 二模14day2解题报告
T1.砍树(cuttree) 给出n棵树,要锯下m米木材,现在有一个高度h,h以上所有木头都砍下来,求满足m米的最小h 很简单的二分答案判断可行性. T2.快速求和(quicksum) 给出数字串s, ...
- 二模12day1解题报告
T1.笨笨与电影票(ticket) 有n个1和m个0,求每个数前1的个数都大于等于0的个数的排列数. 非常坑的一道题,推导过程很烦.首先求出所有排列数是 C(n+m,m),然后算不合法的个数. 假设存 ...
- 二模02day1解题报告
T1.淘汰赛制 比赛时的淘汰赛制,给出每两个球队比赛的胜率,求出最终胜率最高的队伍. 这题的概率真的很难算啊感觉...一开始打的代码打下来就是用f[i][j]表示i场比赛后第j人还在场的概率.不难看出 ...
- 二模07day1解题报告
T1.种树(tree) 有n棵树,各有高度,要求每棵树的高度都小于它到其他树的距离(可能种一起).求砍掉的总高度是多少. Ok,那么可以想到,只要满足每棵树和最近的树满足条件就可以保证和其他树满足了. ...
随机推荐
- Form_Form Builder开发基于视图页面和自动代码生成包(案例)
2014-01-06 Created By BaoXinjian
- NeHe OpenGL教程 第二十八课:贝塞尔曲面
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- haxm intelx86加速模拟器的安装
http://blog.csdn.net/huang9012/article/details/18082601 如果安装了还出现 创建模拟器 选项 CPU/abi的时候还出现 no system im ...
- Tomcat启动过程原理详解
基于Java的Web 应用程序是 servlet.JSP 页面.静态页面.类和其他资源的集合,它们可以用标准方式打包,并运行在来自多个供应商的多个容器.Web 应用程序存在于结构化层次结构的目录中,该 ...
- vacabulary1
The hard hat is rigid,so nothing will hurt my head. glue 胶水vegetarian 素食者: 素食主义者:素食的 North Korea 朝鲜S ...
- NPM使用
安装路径修改: 4.配置npm的全局模块存放路径和cache路径 输入以下命令 npm config set prefix “D:\Program Files\node\node-global” n ...
- C++学习41 exception类
C++语言本身或者标准库抛出的异常都是 exception 的子类,称为标准异常(Standard Exception).你可以通过下面的语句来匹配所有标准异常: try{ //可能抛出异常的语句 } ...
- java爬虫实战
1.下载jxl.jar包,网上多的是 2.编写如下代码: package com.beyond.url; import java.io.BufferedReader;import java.io.Fi ...
- 列出当前ARM开发板系统加载的模块
lsmod 列出当前系统中加载的模块,其中左边第一列是模块名,第二列是该模块大小,第三列则是使用该模块的对象数目
- C# UserControl 判断DesignMode
C# UserControl 判断DesignMode .Net开发UserControl时,我们经常需要得知当前是Design Mode还是Runtime Mode. 在Design Mode时 ...