二模09day1解题报告
T1.词编码(word)
给出一些原长为n的01串经过变化后的串求原串。原串的特点是:各个1的位置号和%(n+1)==0
变法(只取其一):
- 改一个0为1
- 删一个
- 加一个
- 不变。
其中2优先考虑位置靠左的,然后优先考虑0
分类讨论加模拟,但是需要优化。现求出sum[i]为i以后的1的个数,ans[i]为i以后的位置和,这样一个后缀和(姑且这么叫)的优化就可以过了。
T2.笨笨粉刷匠(draw)
给出n块m个单位长的木板和t次粉刷,有0,1两种颜色。给出每个单位的正确颜色,且每个单位只能被刷一次。求最多刷对几块。
明显的dp。考虑到每个单位只能刷一次,而且数据范围限制,不能考虑一般的区间dp。先对每块木板处理,f[i][j]表示前i个单位分为j块的最优解,best[i][j]表示i到j之间0的个数和1的个数的较大值。
f[i][j]=max(f[i-1][j],f[k][j-1]+best[k+1][i])
然后就可以处理n块木板了。g[i][j]表示前i块木板刷j次的最大值。
g[i][j]=max(g[i-1][k]+f[i][m][i-k])
输出g[n][t].
T3.笨笨的电话网络(phone)
N个点,p条边,求最短路(而且代价为最大边的权值)(但是其中k条权值可视为0)。
首先肯定有一个最短路模型,但是就最短路肯定处理不了。。。
然后可以二分答案mid,把所有权值<=mid的边全都取来,然后spfa,然后做1到N的最短路(把已经选的边权值看做0,其他看做1),如果<=k表示可行。
然后输出就好了。
二模09day1解题报告的更多相关文章
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- 二模14day1解题报告
注:Index数☞由4,7组成的十进制数. T1.全排列(permutation) 求n个数的第k个排列中,有多少个Index位置上是Index数. 由于k的范围比较小,n的范围比较大(都是109), ...
- 二模12day2解题报告
T1.笨笨玩糖果(sugar) 有n颗糖,两个人轮流取质数颗糖,先取不了的(0或1)为输,求先手能否必胜,能,输出最少几步肯定能赢:不能,输出-1. 一开始天真的写了一个dp,f[i]表示i颗糖最少取 ...
- 二模01day1解题报告
T1.音量调节(changingsounds) 有n个物品的背包(有点不一样,每个物品必须取),给出初始价值,物品价值可正可负(就是两种选择嘛),求可能的最大价值,不可能(<0或>maxs ...
- 二模15day1解题报告
T1.合并序列(minval) 给出长为 n的AB两个序列求两两相加中最小的n个. 据说有证明(在蓝书上,优先队列部分)先把A[1~n]+b[1]入队,然后每取一个a[x]+b[y]就把a[x]+b[ ...
- 二模14day2解题报告
T1.砍树(cuttree) 给出n棵树,要锯下m米木材,现在有一个高度h,h以上所有木头都砍下来,求满足m米的最小h 很简单的二分答案判断可行性. T2.快速求和(quicksum) 给出数字串s, ...
- 二模12day1解题报告
T1.笨笨与电影票(ticket) 有n个1和m个0,求每个数前1的个数都大于等于0的个数的排列数. 非常坑的一道题,推导过程很烦.首先求出所有排列数是 C(n+m,m),然后算不合法的个数. 假设存 ...
- 二模02day1解题报告
T1.淘汰赛制 比赛时的淘汰赛制,给出每两个球队比赛的胜率,求出最终胜率最高的队伍. 这题的概率真的很难算啊感觉...一开始打的代码打下来就是用f[i][j]表示i场比赛后第j人还在场的概率.不难看出 ...
- 二模07day1解题报告
T1.种树(tree) 有n棵树,各有高度,要求每棵树的高度都小于它到其他树的距离(可能种一起).求砍掉的总高度是多少. Ok,那么可以想到,只要满足每棵树和最近的树满足条件就可以保证和其他树满足了. ...
随机推荐
- html5 中meta中 content=width=device-width注意
<!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...
- 1. Netty解决Tcp粘包拆包
一. TCP粘包问题 实际发送的消息, 可能会被TCP拆分成很多数据包发送, 也可能把很多消息组合成一个数据包发送 粘包拆包发生的原因 (1) 应用程序一次写的字节大小超过socket发送缓冲区大小 ...
- 关于Linux中exec的一点心得
最近在学习linux操作系统中的相关知识,在使用execlp系统调用时,发现了些有趣的东西. 首先,关于execlp函数的用法: int execlp(const char *file, const ...
- javaweb工程,Servlet里面获取当前WEB跟路径的文件绝对路径地址
String base_Url = request.getSession().getServletContext().getRealPath("/"); String window ...
- Tomcat DEBUG模式下修改代码立刻生效!
- MODBUS-RTU学习
一 RTU比ASCII传输密度高.参数格式:起始位+8BITS数据位+校验位+停止位. 1.1校验默认为偶校验,建议为无校验,测试要多1个停止位(即停止位为2位) 1.2发送顺序为从左到右LSB-&g ...
- 获取mysql数据表中的列名
select COLUMN_NAME from information_schema.columns where table_name='table_name' DESCRIBE table_name ...
- [ActionScript 3.0] AS3 获取函数参数个数
function createFunction(param1:String,param2:String,param3:int=0):void { trace(arguments.length);//a ...
- JAVA错误:Cannot refer to a non-final variable * inside an inner class defined in a different method
在使用Java局部内部类或者内部类时,若该类调用了所在方法的局部变量,则该局部变量必须使用final关键字来修饰,否则将会出现编译错误“Cannot refer to a non-final vari ...
- java GUI之基本图形
1.为了支持图形用户界面程序设计,java1.0的标准类库中包含一个抽象窗口工具箱(Abstract Window Toolkit,AWT). 这个工具箱极不成熟,其编程模型也不是面向对象的,有很大的 ...