PAT甲级——A1123 Is It a Complete AVL Tree【30】
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
![]() |
![]() |
|---|---|
![]() |
![]() |
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YESif the tree is complete, or NO if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
分析:这道题考察AVL树和层序遍历以及完全二叉树
判断是不是完全⼆叉树,就看在出现了⼀个孩⼦为空的结点之后是否还会出现孩⼦结点不为空的结
点,如果出现了就不是完全⼆叉树。
AVL树⼀共有四种情况,这⾥我把发现树不平衡的那个结点叫做A结点,A发现树不平衡的情况有四
种:
新来的结点插⼊到A的左⼦树的左⼦树
新来的结点插⼊到A的左⼦树的右⼦树
新来的结点插⼊到A的右⼦树的左⼦树
新来的结点插⼊到A的右⼦树的右⼦树
发现不平衡时就需要处理,第1种情况只要简单的右旋,第4种情况只需左旋⼀下,
第2种情况需要先对A的左⼦树左旋⼀下,然后对A右旋,同理第3种情况需要对A的右⼦树右旋⼀下,然后对A左旋
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
struct Node
{
int v;
Node *l, *r;
Node(int a = -) :v(a), l(nullptr), r(nullptr) {}
};
int n, a;
vector<int>res;
int getHeight(Node* root)
{
if (root == nullptr)
return ;
return max(getHeight(root->l), getHeight(root->r))+;
}
Node* rotateRight(Node* root)//右旋
{
Node*p = root->l;
root->l = p->r;
p->r = root;
return p;//新的根节点
}
Node* rotateLeft(Node* root)//左旋
{
Node*p = root->r;
root->r = p->l;
p->l = root;
return p;//新的根节点
}
Node* rotateLeftRight(Node* root)//左右旋
{
root->l = rotateLeft(root->l);//先左旋
return rotateRight(root);//再右旋
}
Node* rotateRightLeft(Node* root)//右左旋
{
root->r = rotateRight(root->r);//先右旋
return rotateLeft(root);//再左旋
}
Node* Insert(Node* root, int x)
{
if (root == nullptr)
{
root = new Node(x);
return root;
}
if (x < root->v)
{
root->l = Insert(root->l, x);
if (getHeight(root->l) - getHeight(root->r) >= )
root = x < root->l->v ? rotateRight(root) : rotateLeftRight(root);
}
else
{
root->r = Insert(root->r, x);
if (getHeight(root->r) - getHeight(root->l) >= )
root = x > root->r->v ? rotateLeft(root) : rotateRightLeft(root);
}
return root;
}
bool LevelOrder(Node* root)
{
bool flag = true;//是不是完全二叉树
if (root == nullptr)
return flag;
queue<Node*>q, temp;
q.push(root);
while (!q.empty())
{
Node*p = q.front();
q.pop();
temp.push(p);
res.push_back(p->v);
if (p->l != nullptr)
q.push(p->l);
else if (temp.size() + q.size() != n)//中间出现空节点,不是完全二叉树
flag = false;
if (p->r != nullptr)
q.push(p->r);
else if (temp.size() + q.size() != n)//中间出现空节点,不是完全二叉树
flag = false;
}
return flag;
}
int main()
{
cin >> n;
Node* root = nullptr;
for (int i = ; i < n; ++i)
{
cin >> a;
root = Insert(root, a);
}
bool flag = LevelOrder(root);
for (int i = ; i < res.size(); ++i)
cout << (i > ? " " : "") << res[i];
if (flag)
cout << endl << "YES" << endl;
else
cout << endl << "NO" << endl;
return ;
}
PAT甲级——A1123 Is It a Complete AVL Tree【30】的更多相关文章
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT 1123. Is It a Complete AVL Tree (30)
AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...
随机推荐
- Webstorm 、ECMAScript 6 、AngularJS
突然接到一智障询问以上内容,大发善心总结(其实就是CV大法)一下下,希望能帮助某智障.....上干活! WebStorm 刚看到我是懵逼的,但是看到和其他两个在一起,猜想到是前台的一开始以为是前台框架 ...
- C#中反射的基础基础基础
class Program { static void Main(string[] args) { Type t = typeof(Student);//typeof(类) 取类的类型 并且存储在Ty ...
- php获取数组中指定值的下标
public function find_by_foreach($array,$find)//$array数组 $find需要查找的值 { foreach ($array as $key => ...
- java-day12
数据结构 常用的数据存储结构:栈,队列,数组,列表,红黑树. 栈:先进后出(入口和出口在用一侧) 队列:先进先出 数组: 查询快:因为数组的地址是连续的,通过数组的首地址找到数组中的元素. 增/删慢: ...
- [AH2017/HNOI2017]单旋
题目 \(\rm splay\)水平太差,于是得手玩一下才能发现规律 首先插入一个数,其肯定会成为其前驱的右儿子或者是后继的左儿子,进一步手玩发现前驱的右儿子或者是后继的左儿子一定只有一个是空的,我们 ...
- upper_bound() lower_bound() 用法
头文件 #include<algorithm> #include<iostream>#include<vector>#include<algorithm> ...
- centos yum install 找不到软件包
yum install epel-release 然后再试试yum install 其他安装包
- 2019 Multi-University Training Contest 3 B 支配树
题目传送门 题意:给出衣服有向无环图(DAG),,定义出度为0的点为中心城市,每次询问给出两个点,求破坏任意一个城市,使得这两个点至少有一个点无法到达中心城市,求方案数. 思路:首先建立反向图,将城市 ...
- 数据库MySQL--基础查询
1.查询字段 查询表某字段:select 字段名 from 表名: 查询表内所有字段:select * from 表名: (当字段和关键字重名是用( ` )着重号区分 ) 2.查询常量值 select ...
- 调整VMware中虚拟机中Linux系统屏幕分辨率的问题
即:解决显示底部菜单栏以及安装软件中没有下一步的按钮用Tab键的问题 右击打开终端,输入以下命令: Xrandr Xrandr -s 1280x720 (自己选择一个分辨率即可) 原文:https: ...



