Description

  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d

(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个

  给出n, d,编程数出深度为d的n元树数目。

Input

  仅包含两个整数n, d( 0 < n < = 32, 0 < = d < = 16)

Output

  仅包含一个数,即深度为d的n元树的数目。

Sample Input

【样例输入1】

2 2

【样例输入2】

2 3

【样例输入3】

3 5

Sample Output

【样例输出1】

3

【样例输出2】

21

【样例输出2】

58871587162270592645034001

———————————————————————————-

题解

转移方程比较容易思考:
dp[i]=dp[i-1]^n+1;
主要考点就是高精的重载运算符。

代码

#include <iostream>
#include <string>
#include <cstring>
#include <cstdio>
using namespace std; const int maxn = 10000; struct bign{
int d[maxn], len; void clean() { while(len > 1 && !d[len-1]) len--; } bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num){
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num){
char s[2000]; sprintf(s, "%d", num);
*this = s;
return *this;
} bign operator + (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i]%=10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++]%=10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b){
bign c = *this; int i;
for (i = 0; i < b.len; i++){
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i]+=10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++]+=10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b)const{
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++) for(i = 0; i < len; i++)
c.d[i+j] += d[i] * b.d[j];
for(i = 0; i < c.len-1; i++)
c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
bign operator / (const bign& b){
int i, j;
bign c = *this, a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
c.d[i] = j;
a = a - b*j;
}
c.clean();
return c;
}
bign operator % (const bign& b){
int i, j;
bign a = 0;
for (i = len - 1; i >= 0; i--)
{
a = a*10 + d[i];
for (j = 0; j < 10; j++) if (a < b*(j+1)) break;
a = a - b*j;
}
return a;
}
bign operator += (const bign& b){
*this = *this + b;
return *this;
} bool operator <(const bign& b) const{
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(d[i] != b.d[i]) return d[i] < b.d[i];
return false;
}
bool operator >(const bign& b) const{return b < *this;}
bool operator<=(const bign& b) const{return !(b < *this);}
bool operator>=(const bign& b) const{return !(*this < b);}
bool operator!=(const bign& b) const{return b < *this || *this < b;}
bool operator==(const bign& b) const{return !(b < *this) && !(b > *this);} string str() const{
char s[maxn]={};
for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
return s;
}
}; istream& operator >> (istream& in, bign& x)
{
string s;
in >> s;
x = s.c_str();
return in;
} ostream& operator << (ostream& out, const bign& x)
{
out << x.str();
return out;
} bign f[35];
int n;
int d; int main(){
cin>>n>>d;
if(n==1&&d==1) return cout<<0,0;
if(d==0) return cout<<1,0;
f[1]=1;
for(int i=1;i<=d;i++) {
bign tmp=1;
for(int j=1;j<=n;j++) tmp=tmp*f[i-1];
f[i]=f[i]+tmp+1;
}
bign ans=f[d]-f[d-1];
cout<<ans;
}

BZOJ 1089 (SCOI 2003) 严格n元树的更多相关文章

  1. 【BZOJ 1089】[SCOI2003]严格n元树

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设fi表示深度为i的树个数,si是fi的前缀和,即si为深度不超过i树的个数. 那么si=s[i-1]^n + 1 就是说 先选一个 ...

  2. 【BZOJ】【1089】【SCOI2003】严格n元树

    高精度/递推 Orz Hzwer…… 然而我想多了…… 理解以后感觉黄学长的递推好精妙啊 顺便学到了一份高精度的板子= =233 引用下题解: f[i]=f[i-1]^n+1 ans=f[d]-f[d ...

  3. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  4. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  5. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  6. [BZOJ]1089 严格n元树(SCOI2003)

    十几年前的题啊……果然还处于高精度遍地走的年代.不过通过这道题,小C想mark一下n叉树计数的做法. Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该 ...

  7. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  8. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  9. 【SCOI 2003】 严格n元树

    [题目链接] 点击打开链接 [算法] f[i]表示深度小于等于i的严格n元树 显然,一棵深度小于等于i的严格n元树,就是一个根节点,下面有n棵子树,这n棵子树都是深度小于等于i-1的严格n元树,每棵子 ...

随机推荐

  1. utmp, wtmp - 登 录 记 录(login records)

    SYNOPSIS[总览] #include DESCRIPTION[描述] utmp 文 件 用 于 记 录 当 前 系 统 用 户 是 哪 些 人. 但 是 实 际 的 人 数 可 能 比 这 个 ...

  2. tomcat启动内存修改

    #   USE_NOHUP       (Optional) If set to the string true the start command will #                   ...

  3. Spring接收数据,传递数据

    Spring接收数据,传递数据 前提配置 POM   <dependency> <groupId>org.springframework</groupId> < ...

  4. pandas--层次化索引

    层次化索引是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别. 创建一个Series,并用一个由列表或数组组成的列表作为索引. data=Series(np.random.r ...

  5. pandas--排序和排名

    排序 要对行或列索引进行排序,可使用sort_index方法,它将返回一个已排序的新对象: Series 1.对Series索引排序 obj=Series(range(4),index=['d','a ...

  6. 笔记37 Spring Web Flow——流程的组件

    在Spring Web Flow中,流程是由三个主要元素定义的:状态.转移和 流程数据. 一.状态 Spring Web Flow定义了五种不同类型的状态.通过选择Spring Web Flow的状态 ...

  7. 每天进步一点点-深度学习入门-基于Python的理论与实现 (2)

    今天要补上两天的 不补了,新手,看的比较慢-- 手写识别例子跳过先 思考如何实现数字5的识别 三种方法: 训练数据:学习,寻找最优解 测试数据:评价模型能力. 损失函数:以损失函数为线索寻找自由权重参 ...

  8. leetcood学习笔记-58-最后一个单词的长度

    题目描述: 第一次解答: class Solution: def lengthOfLastWord(self, s: str) -> int: L=s.strip().split(" ...

  9. __init__初始化方法

    使用场景:多个对象(由同一个类产生)的属性同名且值都一样,这时就需要使用init()方法. # 多个对象(由同一个类产生)的属性同名且值都一样,这时就需要使用__init__()方法. # class ...

  10. PHP mysqli_affected_rows() 函数

    实例 从不同的查询中输出所影响记录行数: <?php // 假定数据库用户名:root,密码:123456,数据库:RUNOOB $con=mysqli_connect("localh ...