LuoguP6850 NOI 题解
Content
小 L 参加了 \(\texttt{NOI}\),现在他告诉你九个数 \(a,b,c,d,e,f,g,h,i\),分别表示——笔试作对的题数、D1T1、D1T2、D1T3、D2T1、D2T2、D2T3 分别得到的分数、是否是 A 类选手(\(1\) 表示是,\(0\) 表示不是)和进队线。已知 \(\texttt{NOI}\) 的计分方式是:
- 笔试基础分为 \(50\),每做对一题加 \(1\) 分。
- 总分为笔试分数加上上机题目每题的分数。
- 如果是 A 类选手还有 \(5\) 分的加成。
请问小 L 是否能够进队。
数据范围:\(0\leqslant a\leqslant 50,0\leqslant b,c,d,e,f,g\leqslant 100,0\leqslant h\leqslant 1,205\leqslant i\leqslant 705\)。
Solution
直接按照上面的规则计算分数,很明显可以推出来分数是 \(a+b+c+d+e+f+g+50+h\times5\)。
这里我来解释一下:
- 为什么要加 \(a,b,c,d,e,f,g\) 不需要讲吧。
- 笔试基础分有 \(50\) 分,需要加上去。
- 因为有 A 类名额的话,\(h=1,h\times5=5\);没有的话,\(h=0,h\times 5=0\)。所以 \(h\times 5\) 就相当于看有没有 A 类名额的加成,没有?那这个 \(h\times 5\) 也是白加。
然后再判断这个分数是否 \(\geqslant i\) 即可。
Code
#include <cstdio>
using namespace std;
int a[17], sum;
int main() {
for(int i = 1; i <= 9; ++i) scanf("%d", &a[i]);
sum = 50 + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7] + a[8] * 5;
if(sum >= a[9]) printf("AKIOI");
else printf("AFO");
}
LuoguP6850 NOI 题解的更多相关文章
- 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计
@ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...
- 贪心(qwq)习题题解
贪心(qwq)习题题解 SCOI 题解 [ SCOI2016 美味 ] 假设已经确定了前i位,那么答案ans一定属于一个区间. 从高位往低位贪心,每次区间查找是否存在使此位答案为1的值. 比如6位数确 ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
- NOI题库 1768最大子矩阵 题解
NOI题库 1768最大子矩阵 题解 总时间限制: 1000ms 内存限制: 65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大 ...
- 【NOI 2019】同步赛 / 题解 / 感想
非常颓写不动题怎么办…… 写下这篇博客警示自己吧…… 游记 7.16 我并不在广二参加 NOI,而是在距离广二体育馆一公里远的包间打同步赛(其实就是给写不动题找个理由) 上午身体不舒服,鸽了半天才看题 ...
- NOI 2021 部分题目题解
最近几天复盘了一下NOI 2021,愈发发觉自己的愚蠢,可惜D2T3仍是不会,于是只写前面的题解 Day1 T1 可以发现,每次相当于将 \(x\to y\) 染上一种全新颜色,然后一条边是重边当且仅 ...
- [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)
[NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...
- NOI 2011 兔农 题解
事先声明,本博客代码主要模仿accepoc,且仅针对一般如本博主一样的蒟蒻. 这道题不得不说数据良心,给了75分的水分,但剩下25分真心很难得到,因此我们就来讲一讲这剩下的25分. 首先,有数据可知他 ...
- [NOI 2020 Online] 入门组T1 文具采购(洛谷 P6188)题解
原题传送门 题目部分:(来自于考试题面,经整理) [题目描述] 小明的班上共有 n 元班费,同学们准备使用班费集体购买 3 种物品: 1.圆规,每个 7 元. 2.笔,每支 4 元. 3.笔记本,每本 ...
随机推荐
- C# Pechkin初始化一次后被锁住的问题
Pechkin.dll可用于pdf的生成,常规用法网上都有介绍:https://www.cnblogs.com/felixnet/p/5143934.html 但是当在一个页面上执行过一次之后,再次就 ...
- Pulsar云原生分布式消息和流平台v2.8.0
Pulsar云原生分布式消息和流平台 **本人博客网站 **IT小神 www.itxiaoshen.com Pulsar官方网站 Apache Pulsar是一个云原生的分布式消息和流媒体平台,最初创 ...
- Jenkins系列-权限管理
在实际工作中,存在多个团队都需要Jenkins来实现持续交付,但是又希望不同团队之间进行隔离,每个项目有自己的view, 只能看到自己项目的jenkins job. 但是,jenkins默认的权限管理 ...
- List集合与Set集合(ArrayList,LinkedList,Vector,HashSet,LinkedHashSet,可变参数)
List集合介绍及常用方法 import java.util.ArrayList; import java.util.Iterator; import java.util.List; /* java. ...
- 【备考06组01号】第四届蓝桥杯JAVA组A组国赛题解
1.填算式 (1)题目描述 请看下面的算式: (ABCD - EFGH) * XY = 900 每个字母代表一个0~9的数字,不同字母代表不同数字,首位不能为0. 比如 ...
- Codeforces 1149C - Tree Generator™(线段树+转化+标记维护)
Codeforces 题目传送门 & 洛谷题目传送门 首先考虑这个所谓的"括号树"与直径的本质是什么.考虑括号树上两点 \(x,y\),我们不妨用一个"DFS&q ...
- Python基础之变量与常量
目录 1. 变量 1.1 变量的定义和组成 1.2 变量名的命名规则 1.3 变量名的两种风格 2. 常量 3. 变量内存管理 3.1 变量的存储 3.2 垃圾回收机制 3.2.1 引用计数 3.3 ...
- 31-Longest Common Prefix
Longest Common Prefix My Submissions Difficulty: Easy Write a function to find the longest common pr ...
- 使用Rainbond实现离线环境软件交付
一.离线交付的痛点 在传统行业,如政府.能源.军工.公安.工业.交通等行业,为了防止数据泄露和运行安全考虑,一般情况下网络会采取内外网隔离的策略,以防范不必要的风险,毕竟在安全防护方面,网络物理隔离是 ...
- 修改linux系统下mysql数据库登陆密码(密码忘记)
报错:Access denied for user 'root'@'localhost' (using password: NO) 解决方案: 1. 检查mysql服务是否启动,如果启动,关闭mysq ...