YbtOJ#643-机器决斗【贪心,李超树】
正题
题目链接:https://www.ybtoj.com.cn/problem/643
题目大意
\(n\)个机器人,第\(i\)个攻击力为\(A_i\),防御为\(D_i\)。
然后你每次可以对一个机器人造成\(Atk\)点伤害,之后所有机器人对你进行一次攻击。
开局可以删除两个机器人,求最少受到多少伤害。
\(n\in[3,3\times 10^5],A_i,T_i\in[1,10^4]\)
解题思路
设每个机器人需要攻击的次数\(T_i\)
先不考虑删除的话是一个很经典的贪心,按照\(\frac{T_i}{A_i}\)从小到大排序就好了。证明的话
设目前是排序好的序列,是否交换相邻的两个\(i,j(j>i)\)需要满足
\[T_iA_j\geq T_jA_i
\]化简一下就可以发现一定不合法
然后考虑删除哪两个,设\(St_i=\sum_{j=1}^iT_i,Sa_i=\sum_{j=1}^nA_i\),那么删除一个\(x\)会减少贡献
\]
(分别计算自己减去的和自己对后面的数产生的贡献)。
但是如果删除了两个数\(x,y(x<y)\)就会多减去\(T_xA_y\)的贡献。
所以我们要求$$\max{ b_x+b_y-T_xA_y } (x<y)$$
这个因为值域比较小直接上李超树就好了,当然也可以\(CDQ\)分治或者\(Splay\)搞斜率优化
时间复杂度\(O(n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=3e5+10;
struct node{
ll b,k;
};
ll n,atk,sum,ans,maxs,lim;
ll p[N],a[N],t[N],st[N],sa[N],b[N],w[N];
bool cmp(ll x,ll y)
{return t[x]*a[y]<t[y]*a[x];}
ll ct(ll x,ll id)
{return t[p[id]]*x+b[id];}
void Change(ll x,ll l,ll r,ll id){
if(ct(l,id)>=ct(l,w[x])&&ct(r,id)>=ct(l,w[x])){w[x]=id;return;}
if(ct(l,id)<=ct(l,w[x])&&ct(r,id)<=ct(r,w[x]))return;
if(l==r)return;ll mid=(l+r)>>1;
if(t[p[id]]<t[p[w[x]]]){
if(ct(mid,id)>=ct(mid,w[x]))
Change(x*2+1,mid+1,r,w[x]),w[x]=id;
Change(x*2,l,mid,id);
}
else{
if(ct(mid,id)>=ct(mid,w[x]))
Change(x*2,l,mid,w[x]),w[x]=id;
Change(x*2+1,mid+1,r,id);
}
return;
}
ll Ask(ll x,ll l,ll r,ll pos){
if(l==r)return ct(pos,w[x]);
ll mid=(l+r)>>1,ans;
if(pos<=mid)ans=Ask(x*2,l,mid,pos);
else ans=Ask(x*2+1,mid+1,r,pos);
return max(ans,ct(pos,w[x]));
}
signed main()
{
freopen("fittest.in","r",stdin);
freopen("fittest.out","w",stdout);
scanf("%lld%lld",&n,&atk);
for(ll i=1;i<=n;i++){
scanf("%lld%lld",&a[i],&t[i]);
t[i]=(t[i]+atk-1)/atk;p[i]=i;
sum+=a[i];lim=max(max(a[i],t[i]),lim);
}
sort(p+1,p+1+n,cmp);b[0]=-1e18;
for(ll i=1;i<=n;i++){
ll x=p[i];
st[i]=st[i-1]+t[x];
sa[i]=sa[i-1]+a[x];
b[i]=(sum-sa[i])*t[x]+st[i]*a[x]-a[x];
ans+=st[i]*a[x]-a[x];
}
for(ll i=1;i<=n;i++){
int x=p[i];
ll tmp=b[i]+Ask(1,1,lim,a[x]);
maxs=max(maxs,tmp);t[x]=-t[x];
Change(1,1,lim,i);
}
printf("%lld\n",ans-maxs);
return 0;
}
YbtOJ#643-机器决斗【贪心,李超树】的更多相关文章
- BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库
正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...
- BZOJ1568: [JSOI2008]Blue Mary开公司【李超树】
Description Input 第一行 :一个整数N ,表示方案和询问的总数. 接下来N行,每行开头一个单词"Query"或"Project". 若单词为Q ...
- #6034. 「雅礼集训 2017 Day2」线段游戏 李超树
#6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统 ...
- Good Inflation SPOJ - GOODG 李超树
题目传送门 题意:刚开始有一个气球体积为空,现在有n个充气点,从1->n遍历这n充气点,每个充气点有vi,di,vi为走到这个充气点之后可以为气球充气vi的体积,di为选择了在这个点充气的时候, ...
- 【题解】P1712 [NOI2016]区间(贪心+线段树)
[题解]P1712 [NOI2016]区间(贪心+线段树) 一个observe是,对于一个合法的方案,将其线段长度按照从大到小排序后,他极差的来源是第一个和最后一个.或者说,读入的线段按照长度分类后, ...
- [SDOI2016]游戏(树剖+李超树)
趁着我把李超树忘个一干二净的时候来复习一下吧,毕竟马上NOI了. 题解:看着那个dis就很不爽,直接把它转换成深度问题,然后一条直线x->y,假设其lca为z,可以拆分成x->z和z-&g ...
- P4254 [JSOI2008]Blue Mary开公司 (李超树)
题意:插入一些一次函数线段 每次询问在x = x0处这些线段的最大值 题解:李超树模版题 维护优势线段 注意这题的输入是x=1时的b #include <iostream> #includ ...
- Codeforces 675E Trains and Statistic(DP + 贪心 + 线段树)
题目大概说有n(<=10W)个车站,每个车站i卖到车站i+1...a[i]的票,p[i][j]表示从车站i到车站j所需买的最少车票数,求所有的p[i][j](i<j)的和. 好难,不会写. ...
- poj 2010 Moo University - Financial Aid (贪心+线段树)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 骗一下访问量.... 题意大概是:从c个中选出n个 ...
随机推荐
- WPF 实现完全可控制的漂亮自定义窗口
在WPF界面开发中,有时候不想用系统的死板的窗口,想要来点新花样,常会自定义窗口. 那么,先抛出问题,想搞出下面这样的窗口,该咋整 ? aa 下面看一个啥也没设置过的普通窗口,这样的窗口,我们只能控 ...
- springboot中@Mapper和@Repository的区别
@Mapper和@Repository是常用的两个注解,两者都是用在dao上,两者功能差不多,容易混淆,有必要清楚其细微区别: 区别: @Repository需要在Spring中配置扫描地址,然后生成 ...
- C# ThreadLocal源码追踪
ThreadLocal 字段成员: private Func<T>? _valueFactory; 一个获取默认值的委托 不同线程共享此成员. [ThreadStatic] private ...
- mongodb重启报错解决
mongodb关闭后重启失败 connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&gssapiServiceName= ...
- git所遇到的问题
出现这种情况,或 ERROR: Repository not found. fatal: 无法读取远程仓库. 解决办法如下: 1.先输入$ git remote rm origin(删除关联的orig ...
- python常用工具库介绍
Numpy:科学计算 HOME: http://www.numpy.org/ NumPy is the fundamental package for scientific computing wi ...
- MySQL实战45讲(10--15)-笔记
11 | 怎么给字符串字段加索引? 维护一个支持邮箱登录的系统,用户表是这么定义的: mysql> create table SUser( ID bigint unsigned primary ...
- 20210816 你相信引力吗,marshland,party?,半夜
考场 第一眼都不可做 T1 长得就像单调栈/单调队列,推了推性质发现优弧.劣弧都合法的点对很好处理,其他情况只在一种情况合法,那么开两个单调队列分别统计距离 \(\le\frac2n,>\fra ...
- tslib移植arm及使用
测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 tslib 1.4 下载 https://gitlab. ...
- javascript(1)简介
点击查看代码 ### javascript 1.JavaScript简介 javascript是一种轻量级的脚本语言,可以部署在多种环境,最常见的部署环境就是浏览器, 脚本语言: 它不具备开发操作系统 ...