Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

Gowal S., Qin C., Uesato J., Mann T. & Kohli P. Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples. arXiv preprint arXiv 2010.03593, 2020.

暴力美学, 通过调参探索adversarial training的极限.

主要内容

实验设置

模型主要包括WRN-28-10, WRN-34-10, WRN-34-20, WRN-70-16;

优化器为SGD(nesterov momentum), 1/2, 3/4 epochs处 lr /= 10, weight decay 5e-4;

对抗训练用的是PGD-10, 步长为2/255\(\ell_{\infty}\)和15/255\(\ell_{2}\).

损失的影响

实际上就是比较不同方法的区别(包括外循环的损失和内循环构造对抗样本的损失, TRADES稍优):

额外的数据

有很多方法用了无标签数据作为额外的数据来进行训练并取得了很好的效果.

上表作者比较的是无标签数据的量, 显示过多的数据并不能一直增加鲁棒性.

上图关注的是有标签数据和无标签数据之前的比例关系, 显然无标签数据似乎更能带来鲁棒性(这与无监督训练更具鲁棒性是一致的).

网络结构

从上图可知, 网络越大鲁棒性越好.

其他的一些tricks

  • Model Weight Averaging: 作者发现这个对提高鲁棒性很有帮助, 且这方面缺乏研究

  • 激活函数: Swish/SiLu表现不错, 整体相差不大.

  • Learning Rate Schedule: 常用的multistep decay表现最好.

  • 训练次数: 并非越大越好, 实际上已经有最新工作指出对抗训练存在严重的过拟合.

  • 正则化(weight decay): \(\ell_2\)正则化, 即weight decay在对抗训练中有重要作用.

  • 构造对抗样本所需的steps: 步数越多鲁棒性越好, 但是这是一个trade-off, 伴随着干净数据集的正确率下降

  • 构造对抗样本的epsilon: 有类似上面的结论, 太大了二者都会下降.

  • Batch Size: 同样并非越大越好.

  • Augmentation: 似乎对于对抗训练意义不大, 但是个人在实验中发现这对防止过拟合有一定效果.

  • Label Smoothing: 几乎没影响

Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples的更多相关文章

  1. Adversarial Training

    原于2018年1月在实验室组会上做的分享,今天分享给大家,希望对大家科研有所帮助. 今天给大家分享一下对抗训练(Adversarial Training,AT). 为何要选择这个主题呢? 我们从上图的 ...

  2. 《C-RNN-GAN: Continuous recurrent neural networks with adversarial training》论文笔记

    出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data, ...

  3. LTD: Low Temperature Distillation for Robust Adversarial Training

    目录 概 主要内容 Chen E. and Lee C. LTD: Low temperature distillation for robust adversarial training. arXi ...

  4. Understanding and Improving Fast Adversarial Training

    目录 概 主要内容 Random Step的作用 线性性质 gradient alignment 代码 Andriushchenko M. and Flammarion N. Understandin ...

  5. Adversarial Training with Rectified Rejection

    目录 概 主要内容 rejection 实际使用 代码 Pang T., Zhang H., He D., Dong Y., Su H., Chen W., Zhu J., Liu T. Advers ...

  6. Boosting Adversarial Training with Hypersphere Embedding

    目录 概 主要内容 代码 Pang T., Yang X., Dong Y., Xu K., Su H., Zhu J. Boosting Adversarial Training with Hype ...

  7. 论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》

    论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-f ...

  8. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  9. Unsupervised Domain Adaptation Via Domain Adversarial Training For Speaker Recognition

    年域适应挑战(DAC)数据集的实验表明,所提出的方法不仅有效解决了数据集不匹配问题,而且还优于上述无监督域自适应方法.        

随机推荐

  1. Flume(一)【概述】

    目录 一.Flume定义 二.Flume基础架构 1.Agent 2.Source 3.Sink 4.Channel 5.Event 一.Flume定义 ​ Flume是Cloudera公司提供的一个 ...

  2. 案例 stm32单片机,adc的双通道+dma 内部温度

    可以这样理解 先配置adc :有几个通道就配置几个通道. 然后配置dma,dma是针对adc的,而不是针对通道的. 一开始我以为一个adc通道对应一个dma通道.(这里是错的,其实是我想复杂了) 一个 ...

  3. Oracle中常用的系统表

    1.dba开头的表 dba_users 数据库用户信息 dba_segments 表段信息 dba_extents 数据区信息 dba_objects 数据库对象信息 dba_tablespaces ...

  4. Linux学习 - 关机重启退出命令

    一.shutdown 1 功能 关机.重启操作 2 语法 shutdown  [-chr]  [时间选项] -h 关机 -r 重启 -c 取消前一个关机命令 二.halt.poweroff(关机) 三 ...

  5. 【Linux】【Basis】Grub

    GRUB(Boot Loader):   1. grub: GRand Unified Bootloader grub 0.x: grub legacy grub 1.x: grub2   2. gr ...

  6. webpack配置(vue)

    Vue-loader Vue-loader 是一个加载器,能把 .vue 文件转换为js模块. Vue Loader 的配置和其它的 loader 不太一样.除了将 vue-loader 应用到所有扩 ...

  7. Linux提取命令grep 有这一篇就够了

    grep作为linux中使用频率非常高的一个命令,和cut命令一样都是管道命令中的一员.并且其功能也是对一行数据进行分析,从分析的数据中取出我们想要的数据.也就是相当于一个检索的功能.当然了,grep ...

  8. Nginx平滑升级版本

    目录 一.简介 说明 环境 二.安装 三.使用验证 一.简介 说明 Nginx版本迭代迅速,新版本提供了很多功能,好在Nginx支持不停服务进行升级. 版本之间差距不要太大,不然会导致很多东西不支持 ...

  9. N1BOOK——[第五章 CTF之RE章]wp

    推荐在了解了相应章节的内容后再来练习,你会觉得顿时悟了 记录一下自己的解题过程 2,3,4题目附件来源:https://book.nu1l.com/tasks/#/pages/reverse/5.4 ...

  10. 由一次 UPDATE 过慢 SQL 优化而总结出的经验

    最近,线上的 ETL 数据归档 SQL 发生了点问题,有一个 UPDATE SQL 跑了两天还没跑出来: update t_order_record set archive_id = '420a7fe ...