剑指Offer——贪心算法
剑指Offer——贪心算法
一、基本概念
所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性。所谓无后效性是指:“下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前状态是对以往决策的总结”。所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本要素
1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
2.当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
三、贪心算法的基本思路
1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的局部最优解合成原来解问题的一个解。
从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。
该算法存在的问题:
1. 不能保证求得的最后解是最佳的;
2. 不能用来求最大或最小解问题;
3. 只能求满足某些约束条件的可行解的范围。
四、贪心算法适用的问题
贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
五、贪心算法的实现框架
从问题的某一初始解出发;
while (能朝给定总目标前进一步)
{
利用可行的决策,求出可行解的一个解元素;
}
由所有解元素组合成问题的一个可行解;
六、贪心策略的选择
因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
七、例题分析
[背包问题]
这是一个可以使用贪心算法解的题目,贪心解的确不错,可惜不是最优解。
有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品装入是否能得到最优解?
(3)每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后, 它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
(1)贪心策略:选取价值最大者。反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
(3)贪心策略:选取单位重量价值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选 择A,则答案错误。
[最大整数]
设有n个正整数,将它们连接成一排,组成一个最大的多位整数。
例如:n=3时,3个整数13,312,343,连成的最大整数为34331213。
又如:n=4时,4个整数7,13,4,246,连成的最大整数为7424613。
输入:n
N个数
输出:连成的多位数
算法分析:此题很容易想到使用贪心法,在考试时有很多同学把整数按从大到小的顺序连接起来,测试题目的例子也都符合,但最后测试的结果却不全对。按这种标准,我们很容易找到反例:12,121应该组成12121而非12112,那么是不是相互包含的时候就从小到大呢?也不一定,如12,123就是12312而非12123,这种情况就有很多种了。是不是此题不能用贪心法呢?
其实此题可以用贪心法来求解,只是刚才的标准不对,正确的标准是:先把整数转换成字符串,然后在比较a+b和b+a,如果a+b>=b+a,就把a排在b的前面,反之则把a排在b的后面。
java源程序:
public static void main(String[] args){ String str = ""; ArrayList<String> array = new ArrayList<String>(); Scanner in = new Scanner(System.in); System.out.println("Please input the number of data:"); int n = in.nextInt(); System.out.println("Please input the data:"); while (n-- > 0) { array.add(in.next()); } for(int i = 0; i < array.size(); i ++) for(int j = i + 1; j < array.size(); j ++){ if((array.get(i) + array.get(j)).compareTo(array.get(j) + array.get(i)) < 0){ String temp = array.get(i); array.set(i, array.get(j)); array.set(j, temp); } } for(int i = 0; i < array.size(); i ++){ str += array.get(i); } System.out.println("str=:"+str); } }
[均分纸牌]
有N堆纸牌,编号分别为1,2,…,n。每堆上有若干张,但纸牌总数必为n的倍数.可以在任一堆上取若干张纸牌,然后移动。移牌的规则为:在编号为1上取的纸牌,只能移到编号为2的堆上;在编号为n的堆上取的纸牌,只能移到编号为n-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如:n=4,4堆纸牌分别为:① 9 ② 8 ③ 17 ④ 6 移动三次可以达到目的:从③取4张牌放到④ 再从③取3张放到②然后从②去1张放到①。
输入输出样例:4
9 8 17 6
屏幕显示:3
算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移动次数。
我们用贪心算法,按照从左到右的顺序移动纸牌。如第i堆的纸牌数不等于平均值,则移动一次(即s加1),分两种情况移动:
1.若a[i]>v,则将a[i]-v张从第i堆移动到第i+1堆;
2.若a[i]<v,则将v-a[i]张从第i-1堆移动到第i堆。
为了设计的方便,我们把这两种情况统一看作是将a[i]-v从第i堆移动到第i+1堆,移动后有a[i]=v; a[i+1]=a[i+1]+a[i]-v.
在从第i+1堆取出纸牌补充第i堆的过程中可能会出现第i+1堆的纸牌小于零的情况。
如n=3,三堆纸牌数为1 2 27 ,这时v=10,为了使第一堆为10,要从第二堆移9张到第一堆,而第二堆只有2张可以移,这是不是意味着刚才使用贪心法是错误的呢?
我们继续按规则分析移牌过程,从第二堆移出9张到第一堆后,第一堆有10张,第二堆剩下-7张,在从第三堆移动17张到第二堆,刚好三堆纸牌都是10,最后结果是对的, 我们在移动过程中,只是改变了移动的顺序,而移动次数不变,因此此题使用贪心法可行的。
Java源程序:
public class Greed { public static void main(String[] args) { int n = 0, avg =0, s = 0; Scanner scanner = new Scanner(System.in); ArrayList<Integer> array = new ArrayList<Integer>(); System.out.println("Please input the number of heaps:"); n = scanner.nextInt(); System.out.println("Please input heap number:"); for (int i = 0; i < n; i++) { array.add(scanner.nextInt()); } for(int i = 0; i < array.size(); i ++){ avg += array.get(i); } avg = avg/array.size(); System.out.println(array.size()); System.out.println(avg); for(int i = 0; i < array.size()-1; i ++){ s++; array.set(i+1, array.get(i+1)+array.get(i)-avg); } System.out.println("s:" + s); } }
贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其他算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。
美文美图
剑指Offer——贪心算法的更多相关文章
- 剑指Offer——分治算法
剑指Offer--分治算法 基本概念 在计算机科学中,分治法是一种很重要的算法.字面上的解释是"分而治之",就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更 ...
- 剑指Offer——回溯算法解迷宫问题(java版)
剑指Offer--回溯算法解迷宫问题(java版) 以一个M×N的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍.设计程序,对任意设定的迷宫,求出从入口到出口的所有通路. 下面我们来详细讲一 ...
- 剑指Offer——回溯算法
剑指Offer--回溯算法 什么是回溯法 回溯法实际是穷举算法,按问题某种变化趋势穷举下去,如某状态的变化用完还没有得到最优解,则返回上一种状态继续穷举.回溯法有"通用的解题法"之 ...
- 剑指Offer——动态规划算法
剑指Offer--动态规划算法 什么是动态规划? 和分治法一样,动态规划(dynamic programming)是通过组合子问题而解决整个问题的解. 分治法是将问题划分成一些独立的子问题,递归地求解 ...
- 《剑指offer》算法题第十二天
今天是<剑指offer>算法题系列的最后一天了,但是这个系列并没有包括书上的所有题目,因为正如第一天所说,这些代码是在牛客网上写并且测试的,但是牛客网上并没有涵盖书上所有的题目. 今日题目 ...
- 《剑指offer》算法题第一天
按照个人计划,从今天开始做<剑指offer>上面的算法题,练习平台为牛客网,上面对每道题都有充分的测试实例,感觉还是很不错的.今天下午做了四道题,分别为: 1. 二叉树的深度(书55题) ...
- JS数据结构与算法 - 剑指offer二叉树算法题汇总
❗❗ 必看经验 在博主刷题期间,基本上是碰到一道二叉树就不会碰到一道就不会,有时候一个下午都在搞一道题,看别人解题思路就算能看懂,自己写就呵呵了.一气之下不刷了,改而先去把二叉树的基础算法给搞搞懂,然 ...
- 《剑指offer》算法题第十天
今日题目: 数组中的逆序对 两个链表的第一个公共节点 数字在排序数组中出现的次数 二叉搜索树的第k大节点 字符流中第一个不重复的字符 1. 数组中的逆序对 题目描述: 在数组中的两个数字,如果前面一个 ...
- 《剑指offer》算法题第十一天
今日题目: 滑动窗口的最大值 扑克牌中的顺子 圆圈中最后剩下的数字 求1+2+3+...+n 不用加减乘除做加法 构建乘积数组 今天的题目比较有意思,可以学到很多知识,包括第1题中的数据结构——双向队 ...
随机推荐
- 第三节基础篇—SQL的约束
1.约束是一种限制,它通过对表的行或列的数据做出限制,来确保表的数据的完整性.唯一性.本节实验将在实践操作中熟悉 MySQL 中的几种约束. 约束分类: 2.删除数据库语句为DROP DATABASE ...
- 学生管理系统(SSM简易版)总结
之前用 Servlet + JSP 实现了一个简易版的学生管理系统,在学习了 SSM 框架之后,我们来对之前写过的项目重构一下! 技术准备 为了完成这个项目,需要掌握如下技术: Java 基础知识 前 ...
- @Transient 理解
transient使用小结 1)一旦变量被transient修饰,变量将不再是对象持久化的一部分,该变量内容在序列化后无法获得访问. 2)transient关键字只能修饰变量,而不能修饰方法和类.注意 ...
- MySQL查看数据库信息
使用MySQL时,需要了解当前数据库的情况,例如当前的数据库大小.字符集.用户等等.下面总结了一些查看数据库相关信息的命令 1:查看显示所有数据库 mysql> show databases; ...
- 39. Combination Sum(medium, backtrack 的经典应用, 重要)
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- 64. Minimum Path Sum(中等, 又做出一个DP题, 你们非问我开不开心,当然开心喽!^^)
Given an m x n grid filled with nonnegative numbers, find a path from top left to bottom right which ...
- 18. 4Sum(中等)
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...
- 混合式应用开发之Cordova+vue(1)
一.Cordova创建应用 cordova create oneApp Cordova创建应用出错 Cordova安装时不能使用cnpm 应该使用npm,cnpm虽然快但是后期出的错绝对比这省下来的时 ...
- windows下cmd中命令操作
windows下cmd中命令: cls清空 上下箭头进行命令历史命令切换 ------------------------------------------------------------- ...
- Structured Streaming + Kafka 集成中遇到的问题
官方指导:http://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html 1.版本问题 起初用的kafk ...