布隆过滤器

这名词有没有听着好像很 挺高大上的,的确,它也是一种很重要的结构,下面一起看看:

一:说说历史:

(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False
positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例False negatives,如果某个元素确实没有在该集合中,那么Bloom Filter 是不会报告该元素存在于集合中的,所以不会漏报)。

在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素是否在一个集合中。比如在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断 它是否在已知的字典中);

在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上;在网络爬虫里,一个网址是否被访问过等等。最直接的方法就是将集合中全部的元素存在计算机中,遇到一个新 元素时,将它和集合中的元素直接比较即可。一般来讲,计算机中的集合是用哈希表(hash
table)来存储的。它的好处是快速准确,缺点是费存储空间。当集合比较小时,这个问题不显著,但是当集合巨大时,哈希表存储效率低的问题就显现出来 了。

比如说,一个象 Yahoo,Hotmail 和 Gmai 那样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email 地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。如果用哈希表,每存储一亿
个 email 地址, 就需要 1.6GB 的内存(用哈希表实现的具体办法是将每一个 email 地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email 地址需要占用十六个字节。一亿个地址大约要 1.6GB, 即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB 的内存。除非是超级计算机,一般服务器是无法存储的[2]。(该段引用谷歌数学之美:http://www.google.com.hk/ggblog/googlechinablog/2007/07/bloom-filter_7469.html)

二:概念:

如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。不过世界上还有一种叫作散列表(又叫哈希表,Hash
table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点(关于位阵列,即数据结构位图,详见位图见我另一篇博客:位图BitMap)。这样一来,我们只要看看这个点是不是
1就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

Hash面临的问题就是冲突。假设 Hash 函数是良好的,如果我们的位阵列长度为 m 个点,那么如果我们想将冲突率降低到例如 1%, 这个散列表就只能容纳 m/100 个元素。显然这就不叫空间有效了(Space-efficient)。解决方法也简单,就是使用多个
Hash(如下图所示),如果它们有一个说元素不在集合中,那肯定就不在。如果它们都说在,虽然也有一定可能性它们在说谎,不过直觉上判断这种事情的概率是比较低的。

代码:

bitmap.h

#ifndef _BIT_MAP_H
#define _BIT_MAP_H #include<iostream>
#include<vector>
using namespace std; /*
*一个数据32位,40亿个整数,每个整数需用一位表示,40亿位就完事
*/ class BitMap
{
public:
BitMap()
:_size(0)
{} BitMap(size_t size)
:_size(0)
{
_array.resize((size>>5)+1); //多少个数据,一个数据占32位,加一是至少一个数据
} bool Set(size_t num)
{
size_t index = num >> 5; //计算在哪个数据上
size_t n = num % 32; if (_array[index] & (1 << (31 - n))) //移位问题
{
cout << "有数据" << endl;
return false;
}
else
{
size_t a = 1 << (31 - n);
_array[index] |= a;
++_size;
return true;
}
} bool ReSet(size_t num) //删除一个数 之后重置
{
size_t index = num >> 5;
size_t n = num % 32; if (_array[index] & (1 << (31 - n))) //数存在 删除
{
_array[index] &= (~(1 << (31 - n)));
--_size;
return true;
}
else
{
return false; //不存在这个数
}
} private:
vector<size_t> _array; //数组
size_t _size; //位图中数据个数
}; #endif void Test()
{
BitMap bm(65); for (int i = 0; i < 32; ++i)
{
bm.Set(i);
} bm.ReSet(0);
}

HashFun.h

#pragma once
template<class T> //各类哈希函数
size_t BKDRHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch;
}
return hash;
} template<class T>
size_t SDBMHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
}
return hash;
} template<class T>
size_t RSHash(const char * str)
{
size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
} template<class T>
size_t APHash(const char *str)
{
register size_t hash = 0;
size_t ch;
for (long i = 0; ch = (size_t)*str++; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
}
}
return hash;
} template<class T>
size_t JSHash(const char* str)
{
if (!*str)
{
return 0;
}
size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}

Bloom_Filter.h

#pragma once

#include"BitMap.h"
#include"HashFun.h" template<class T>
struct __HashFun1 //5种哈希函数对应的仿函数
{
size_t operator()(const T& key)
{
return BKDRHash<T>(key.c_str());
}
}; template<class T>
struct __HashFun2
{
size_t operator()(const T& key)
{
return SDBMHash<T>(key.c_str());
}
}; template<class T>
struct __HashFun3
{
size_t operator()(const T& key)
{
return RSHash<T>(key.c_str());
}
}; template<class T>
struct __HashFun4
{
size_t operator()(const T& key)
{
return APHash<T>(key.c_str());
}
}; template<class T>
struct __HashFun5
{
size_t operator()(const T& key)
{
return JSHash<T>(key.c_str());
}
}; template<class K = string,
class HashFun1 = __HashFun1<K>,
class HashFun2 = __HashFun2<K>,
class HashFun3 = __HashFun3<K>,
class HashFun4 = __HashFun4<K>,
class HashFun5 = __HashFun5<K>>
class Bloom_Filter
{
public:
Bloom_Filter(size_t size)
:_capacity(size)
{
_bitmap._array.resize((size >> 5) + 1);
} void _Set(const K& key)
{
_bitmap.Set(HashFun1()(key) % _capacity);
_bitmap.Set(HashFun2()(key) % _capacity);
_bitmap.Set(HashFun3()(key) % _capacity);
_bitmap.Set(HashFun4()(key) % _capacity);
_bitmap.Set(HashFun5()(key) % _capacity);
} bool _IsIn(const K& key)
{
if (!_bitmap.Test(HashFun1()(key) % _capacity))
return false;
if (!_bitmap.Test(HashFun1()(key) % _capacity))
return false;
if (!_bitmap.Test(HashFun1()(key) % _capacity))
return false;
if (!_bitmap.Test(HashFun1()(key) % _capacity))
return false;
if (!_bitmap.Test(HashFun1()(key) % _capacity))
return false;
return true;
}
private:
BitMap _bitmap;
size_t _capacity;
};

三、布隆过滤器优缺点:

1.优点:

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash 函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。布隆过滤器可以表示全集,其它任何数据结构都不能;k
和 m 相同,使用同一组 Hash 函数的两个布隆过滤器的交并差运算可以使用位操作进行。

2.缺点

但是布隆过滤器的缺点和优点一样明显。误算率(False Positive)是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1,
这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

赐教!

C++布隆过滤器的更多相关文章

  1. 布隆过滤器的概述及Python实现

    布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概 ...

  2. 【转】Bloom Filter布隆过滤器的概念和原理

    转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的 ...

  3. 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想

    转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

  4. 布隆过滤器(Bloom Filter)的原理和实现

    什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...

  5. 布隆过滤器(Bloom Filter)

    一.布隆过滤器介绍 Bloom Filter是一种空间效率很高的随机数据结构,Bloom Filter可以看做是对bit-map的扩展,它的原理如下: 当一个元素被加入集合时,通过K个Hash函数将这 ...

  6. 布隆过滤器的java实现

    package com.kaikeba.data.jobspider.util; import java.util.BitSet; public class Bloomfilter { private ...

  7. Bloom Filter(布隆过滤器)

    布隆过滤器用于测试某一元素是否存在于给定的集合中,是一种空间利用率很高的随机数据结构(probabilistic data structure),存在一定的误识别率(false positive),即 ...

  8. 布隆过滤器(BoomFilter)

    1.原理:           a.解决的问题:                判断一个元素是否在一个集合中             b.Hash表的特点:                i.快速准确 ...

  9. 简化布隆过滤器——BitMap

    简化布隆过滤器--BitMap 前言 前段开发项目试就发现,一部分的代码实现存在着一些性能上的隐患.但当时忙于赶进度和由于卡发中的不稳定因素,想了许多解决方案也没有机会实施.最近,正好趁个机会进行一系 ...

  10. [转载] 布隆过滤器(Bloom Filter)详解

    转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

随机推荐

  1. 自定义WIZ文档模板

    WIZ文档模板 1.在wiz笔记里面新建一个笔记,并将其做成一个模板 例子: 2.该作为模板的笔记制作完成后,右键-高级-另存为  导出为html格式 3.将导出的文件和文件夹(有时候只有一个htm文 ...

  2. CentOS7使用dnf安装mysql

    1.安装mysql的yum仓库 执行以下命令: yum localinstall https://dev.mysql.com/get/mysql57-community-release-el7-11. ...

  3. JAVA IDE IntelliJ IDEA 快捷键使用详记

    一.高效定位代码 1.项目之间的跳转 Ctrl + Alt + [  :切换到下一个项目窗口 Ctrl + Alt + ]  :  切换到上一个项目窗口 2.文件之间的跳转↑↓←→ Ctrl + E ...

  4. java第一个程序——Hello World

    Hello World 如果没有下载jdk以及配置环境变量的萌新请自行百度,教程非常的详细(参考:https://jingyan.baidu.com/article/6dad5075d1dc40a12 ...

  5. RobotFramework自动化测试框架-DatabaseLibrary库的使用(对数据库的操作)

    在自动化过程中,我们经常需要连接不同的数据库,并且对数据库进行很多不同的操作,RobotFramework中,提供了DatabaseLibrary这个库来操作数据库,我们可以按照官网中的说明来安装Da ...

  6. 【转载】 Spark性能优化:资源调优篇

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

  7. java线程安全问题以及使用synchronized解决线程安全问题的几种方式

    一.线程安全问题 1.产生原因 我们使用java多线程的时候,最让我们头疼的莫过于多线程引起的线程安全问题,那么线程安全问题到底是如何产生的呢?究其本质,是因为多条线程操作同一数据的过程中,破坏了数据 ...

  8. Java高并发之从零到放弃

    前言 本篇主要讲解如何去优化锁机制或者克服多线程因为锁可导致性能下降的问题 ThreadLocal线程变量 有这样一个场景,前面是一大桶水,10个人去喝水,为了保证线程安全,我们要在杯子上加锁导致大家 ...

  9. 【CF245H】Queries for Number of Palindromes(回文树)

    [CF245H]Queries for Number of Palindromes(回文树) 题面 洛谷 题解 回文树,很类似原来一道后缀自动机的题目 后缀自动机那道题 看到\(n\)的范围很小,但是 ...

  10. [BZOJ2879] [Noi2012] 美食节 (费用流 & 动态加边)

    Description CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节.作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴.他很快就尝遍了美食节所有的美食.然而,尝鲜的欲望是难以满足的.尽 ...