关于sg函数的一些证明
复习csp2019的时候稍微看了看博弈论,发现自己对于sg函数的理解完全不到位
有些定义甚至想都没想过
于是就口胡了一篇blog来安慰虚弱的自己
Question 1
对于一个满足拓扑性质的公平组合游戏
若定义一个函数\(f\),\(f(P状态)=0\)
假设当前状态为\(a\),它对局面的定义合法
那么\(f=sg\)
可以发现,它就是\(Muti-sg\)问题的核心,接下来我们希望证明这个问题的正确性
首先,先弄清几个定义
对于后继
- 指的是一步转移到的状态
- 后继一定不会等于当前状态
对于局面
它满足以下的性质(当然,性质的名字是我自己取的)
- 状态性:它本身也可以是一个状态
- 后继性:局面本身是状态的后继,或是后继的后继,等等
- 异或可行性:即\(f(a)\)是\(a\)所包含的所有局面\(f\)值的异或和
- 唯一改变性:后继与状态本身仅改变了一个局面,
当然事实并不是如此,如果你会k异或的话,但我们不做探究 - 单向变化性:局面只会改变成为它的后继(如果它是一个状态)
证明
\(f=sg\) 等价于任意\(a\)满足,\(f(a)\)是\(mex\{f(a的后继)\}\)
因为状态之间的关系本质上是一个\(DAG\)(即满足拓扑性),所以可以通过归纳法来证明
假设一个状态\(a\),它的所有后继(包括后继的后继)的\(f\)值都等于\(sg\)值
假设\(a\)可以分为局面\(b_1\)~\(b_n\),对应\(f_1\)~\(f_n\),它们等于\(sg_1\)~\(sg_n\)
所以\(f(a)=f_1\oplus f_2\oplus . ..\oplus f_n=sg_1\oplus sg_2\oplus . ..\oplus sg_n\)
如果\(a\)有一个后继\(c\),考虑\(f(c)=f(a)\oplus sg_i \oplus sg_x\),也就是把\(b_i\)这个局面改成了\(x\)局面
考虑\(f(c)\)可以取哪些值?
首先,因为\(sg_i \ne sg_x\),所以\(f(c) \ne f(a)\)
接下来证明\(f(c)\)可以取到\(0\)~\(f(a)-1\)的所有数
对于一个值\(val\in[0,f(a)-1]\)
设\(k\),满足\(val=f(a) \oplus k\)
因为\(val<f(a)\),考虑\(val\)的最高的和\(f(a)\)不同的一位,这一位必然存在并且在这一位上\(f(a)\)是\(1\),\(val\)是\(0\)
这一位同时也是\(k\)的最高位
那么必然存在一个\(sg_i\)满足它的这位是\(1\),而对应的\(sg_x\)必然会小于\(sg_i\),因为它的这位是\(0\)
所以存在满足条件的\(x\)且它是\(b_i\)的后继
所以这样的\(k\)可以通过\(sg_i \oplus sg_x\)构造得到
Question 2
翻硬币游戏
定义,有一些硬币排成一排,两人采用最优策略,每次可以翻动其中一些硬币(正变反,反变正),保证翻的硬币中最右边的硬币只能是从正翻到反,不能翻动者输
结论
每个状态的\(sg\)值等于当前所有为正面的硬币在序列中单独存在的状态的\(sg\)值的异或和
证明
设正面为\(1\),反面为\(0\)
'...'表示状态,...表示局面
把一个状态的\(01\)串倒过来,即'00101'变成\(10100\),把它看成一个二进制数,那么在游戏过程中这个数字递减
所以这个游戏是满足拓扑性质的
接下来我们设一个定义域为\(01\)串的函数\(f\)
- \(f(00...0)=0\)
- \(f(00...01)=sg(00...01)\)
- \(f(一个01串)=\bigoplus_{每一个1} f(000..01)\)
- 其中对于第\(i\)个\(1\),前面有\(i-1\)个\(0\)
假设当前状态为'011001'
\(f(011001)=f(01)\oplus f(001)\oplus f(000001)\)
'011001'有这样一个后继'010100'
可以说\(f(010100)=f(01)\oplus f(0001)=f(011001)\oplus f(0011)\oplus f(000001)\)
我们把\(01\),\(001\),\(000001\)看成是'011001'的三个特殊的局面
那么'010100'可以分拆成\(01\),\(001\),\(0011\)三个局面,尽管它们显得不那么特殊
这样的局面划分是合法的,因为可以看成是\(000001\)变成了\(0011\)这个局面,它满足异或和的性质
而很显然的是'0011'('001100')确实是'000001'的一个后继
因为\(f\)满足这样的性质:
- \(状态f(P状态)=0\)
- 对于局面的定义合法
在此之前,我们已经证明了,对于这样的\(f\),\(f=sg\)
完结撒花★,°:.☆( ̄▽ ̄)/$:.°★ 。
Blog来自PaperCloud,未经允许,请勿转载,TKS!
关于sg函数的一些证明的更多相关文章
- 博弈论(nim游戏,SG函数)
说到自己,就是个笑话.思考问题从不清晰,sg函数的问题证明方法就在眼前可却要弃掉.不过自己理解的也并不透彻,做题也不太行.耳边时不时会想起alf的:"行不行!" 基本的小概念 这里 ...
- 【转】博弈—SG函数
转自:http://chensmiles.blog.163.com/blog/static/12146399120104644141326/ http://blog.csdn.net/xiaofeng ...
- sg函数与博弈论
这个标题是不是看起来很厉害呢... 我们首先来看一个最简单的游戏.比如我现在有一堆石子,有p个,每次可以取走若干个(不能不取),不能取的人就输了. 现在假设有两个人要玩这个游戏,一个人先手,一个人后手 ...
- SG函数 专题练习
[hdu1536][poj2960]S-Nim 题意 题意就是给出一个数组h,为每次可以取石子的数目. 然后给你n堆石子每堆si.求解先手能不能赢? 分析 根据\(h\)数组预处理出\(sg[i]\) ...
- 【转】博弈问题及SG函数(真的很经典)
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- SG函数
入门一: 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则:游戏双方轮流取牌:每人每次仅限于取1张.2张或3张牌:扑克牌取光,则游戏结束:最后取牌的一方 ...
- (转)博弈问题与SG函数
博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...
- Nim 博弈和 sg 函数
sg 函数 参考 通俗易懂 论文 几类经典的博弈问题 阶梯博弈: 只考虑奇数号楼梯Nim,若偶数楼梯只作容器,那么游戏变为Nim.题目 翻转硬币: 局面的SG值为局面中每个正面朝上的棋子单一存在时的S ...
- SG 函数 S-Nim
http://poj.org/problem?id=2960 S-Nim Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34 ...
随机推荐
- 使用linux/macos 自带的shell实现证书方式的快速登陆
一般登陆机器都是需要使用证书安全登陆到跳板机上然后在跳板机去登陆到各个机器. 我们建立一个统一的文件夹mykey,将登陆的pem证书放上去,然后创建一个空白的文件,vim jump.sh #!/usr ...
- windows环境下 mysql 忘记root密码时的解决办法
1,停止MYSQL服务,CMD打开DOS窗口,输入 net stop mysql 2,在CMD命令行窗口,进入MYSQL安装目录 比如E:\Program Files\MySQL\MySQL Serv ...
- 用pyenv管理Python多版本及下载加速方法--Mac上
原文:https://www.jianshu.com/p/91fc7ecc5e46 先大致介绍下pyenv的安装及配置流程.随后介绍加速下载方法 安装: brew install pyenv 配置 在 ...
- 《 .NET并发编程实战》阅读指南 - 第8章
先发表生成URL以印在书里面.等书籍正式出版销售后会公开内容.
- 【linux】CentOS 6 使用cron定时任务,报错:Redirecting to /bin/systemctl restart crond.service
在centos7上,执行cron定时任务的相关命令,反馈如下: 定时任务执行,反馈是: Redirecting to /bin/systemctl restart crond.service 原因: ...
- 制作一个SSRS的ORACLE数据库报表,使用了时间类型的参数。
需求:我们这个报表是以月为单位,呈现的数据为查询为当前月的第一天到最后一天.条件类似于:time_day > 20140601 and time_day < 20140630 因为是让用 ...
- EF自动创建数据库步骤之二(继承DbContext类)
创建好表实体类后,接着就是创建数据库上下文(继承DbContext)并将实体类添加进来. 代码示例如下: using DBClientEntity; using System; using Syste ...
- Linux安装node环境
一.进行连接远程: 1.命令窗口 —> 输入 ssh 用户名@主机IP —> 回车 2.输入密码 (输入后回车) 3.进入根目录 (命令:cd / ) 二.Linux环境安装node: T ...
- linux防火墙和SELinux
1. 关闭防火墙 永久性生效 开启:chkconfig iptables on 关闭:chkconfig iptables off 即时生效 开启:service iptables start 关闭: ...
- Java集合学习(9):集合对比
一.HashMap与HashTable的区别 HashMap和Hashtable的比较是Java面试中的常见问题,用来考验程序员是否能够正确使用集合类以及是否可以随机应变使用多种思路解决问题.Hash ...