题目链接:gfoj

神仙计数题。

可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\(a_i\)。

日常容斥。设\(f(S)\)表示\(i\in S\Rightarrow b_i\in A\)的答案,则答案就是\(ans=\sum_S(-1)^{|S|}f(S)\)。

求\(f(S)\)使用状压dp。设\(f[i][S]\)表示将\(a_i\)从大到小排序,\(b_i\)在\(a\)中出现的下标\(i\)组成的集合\(S\),方案数是多少。

初值\(f[0][0] = 1\)。

如果\(a_{i+1}\)不在\(b_i\)中出现,则\(f[i+1][S]\leftarrow f[i][S]\)。

如果\(a_{i+1}\)在\(b_i\)中出现,枚举\(a_{i+1}=b_k\),那么我们要在\(2^n-S-a_i\)个数中选出\(2^k-1\)个数被\(a_{i+1}\)打掉,组成排列\((2^k)!\)种方案,那么\(f[i+1][S|2^k]\leftarrow f[i][S]\times \dbinom{2^n-S-a_i}{2^k-1}\times (2^k)!\)。

然后你发现我们并没有把不在\(b_i\)中出现的\(S\)这些数没有乘上,所以\(f(S)=f[m][S]\times S!\)。然后抄个柿子上去,时间复杂度\(O(nm2^n)\)。

code

```cpp
#include
#define Rint register int
using namespace std;
typedef long long LL;
const int N = 16, mod = 1e9 + 7;
int n, m, a[N], f[N + 1][1 = mod) a -= mod;}
inline int kasumi(int a, int b){
int res = 1;
while(b){
if(b & 1) res = (LL) res * a % mod;
a = (LL) a * a % mod; b >>= 1;
}
return res;
}
inline void init(int m){
fac[0] = 1;
for(Rint i = 1;i ()); init((1 > k) & 1))
upd(f[i + 1][S | (1

ARC093F Dark Horse 【容斥,状压dp】的更多相关文章

  1. ARC 093 F Dark Horse 容斥 状压dp 组合计数

    LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...

  2. bzoj2669[cqoi2012]局部极小值 容斥+状压dp

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status ...

  3. Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)

    Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...

  4. [BZOJ2669][CQOI2012]局部最小值(容斥+状压DP)

    发现最多有8个限制位置,可以以此为基础DP和容斥. $f_{i,j}=f_{i-1,j}\times (cnt_j-i+1)+\sum_{k\subset j} f_{i-1,k}$ $cnt_j$表 ...

  5. bzoj3812 主旋律 容斥+状压 DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...

  6. Comet OJ - Contest #7 C 临时翻出来的题(容斥+状压)

    题意 https://www.cometoj.com/contest/52/problem/C?problem_id=2416 思路 这里提供一种容斥的写法(?好像网上没看到这种写法) 题目要求编号为 ...

  7. ARC093 F Dark Horse——容斥

    题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...

  8. HDU5731 Solid Dominoes Tilings 状压dp+状压容斥

    题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...

  9. BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)

    (Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...

随机推荐

  1. 基于hystrix的线程池隔离

    hystrix进行资源隔离,其实是提供了一个抽象,叫做command,就是说,你如果要把对某一个依赖服务的所有调用请求,全部隔离在同一份资源池内 对这个依赖服务的所有调用请求,全部走这个资源池内的资源 ...

  2. SpringBoot整合freemarker 引用基础

    原 ElasticSearch学习笔记Ⅲ - SpringBoot整合ES 新建一个SpringBoot项目.添加es的maven坐标如下: <dependency> <groupI ...

  3. PL/SQL的结构

    PL/SQL Developer是一个集成开发环境,专门开发面向Oracle数据库的应用.PL/SQL也是一种程序语言,叫做过程化SQL语言(Procedural Language/SQL).PL/S ...

  4. Linux排查PHP-FPM进程过量常用命令

    命令如下: 查看每个PHP-FPM进程的内存占用:ps -ylC php-fpm –sort:rss 查看消耗内存最多的前 40 个进程:ps auxw|head -1;ps auxw|sort -r ...

  5. CSS-3D动画笔记

    3D 在2d的基础上添加 z 轴的变化 3D 位移:在2d的基础上添加 translateZ(),或者使用translate3d() translateZ():以方框中心为原点,变大 3D 缩放:在2 ...

  6. HTTP协议学习总结

    一个web应用程序,往往是通过http协议进行前后端通信的.而作为一个web工程师,掌握HTTP协议因此也是Web开发必备的一项技能了,尤其是在工作了一定年限之后,更是深感该知识点的重要性.因此,将以 ...

  7. Android为TV端助力之点击Textview无效

    记录一下如果有两个Textview都有点击事件,那么不能给Textview同时设置 android:focusable="true"android:focusableInTouch ...

  8. 当ABAP遇见普罗米修斯

    Jerry每次在工作场合中同Prometheus(普罗米修斯)打交道时,都会"出戏",因为这个单词给我的第一印象,并不是用go语言实现的微服务监控利器,而是名导雷德利·斯科特(Ri ...

  9. Spring Boot 配置多源的 RabbitMQ

    简介 MQ 是开发中很平常的中间件,本文讲述的是怎么在一个Spring Boot项目中配置多源的RabbitMQ,这里不过多的讲解RabbitMQ的相关知识点.如果你也有遇到需要往多个RabbitMQ ...

  10. Linux命令——basename、dirname

    简介 这2个命令多用于shell脚本 用法 basename filename_will_full_path dirname filename_will_full_path 对于但后缀的情况,base ...