HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)
题意:给定带点权的树,问多少个连通块,其乘积<=M; N<=2000,M<1e6;
思路:连通块-->分治; 由于普通的树DP在合并的时候复杂度会高一个M,所以用依赖背包来做。 (当然,由于体积分布是离散的,可能有些选手用map也可以过,这样避免了每次都for(i,1,M),取决于数据吧)。
那么现在的复杂度就是O(NlogN*M) ,空间为O(N*M),尚待优化。
这里非常巧妙的把<sqrt(M)的和大于sqrt(M)的分开保存,那么前者就是正常的背包,表示背包里存了多少东西; 后者可以看成背包里最多还可以存多少东西。 那么复杂度就变成了O(Nsqrt(M)logN); 空间O(Nsqrt(M)); 就可以过了。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
const int Mod=1e9+;
int w[maxn],ans;
int dp1[maxn][maxn>>],dp2[maxn][maxn>>],dp[maxn][maxn];
int Laxt[maxn],Next[maxn<<],To[maxn<<],cnt;
int son[maxn],sz[maxn],vis[maxn],rt,SZ;
int times,p[maxn],M,qM;
void MOD(int &X){if(X>Mod) X-=Mod;}
void add(int u,int v)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v;
}
void getroot(int u,int f) //得到重心
{
sz[u]=; son[u]=;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i]; if(vis[v]||v==f) continue;
getroot(v,u);
sz[u]+=sz[v];
son[u]=max(son[u],sz[v]);
}
son[u]=max(son[u],SZ-son[u]);
if(rt==||son[u]<son[rt]) rt=u;
}
void dfs(int u,int f) //得到dfs序。
{
p[++times]=u; sz[u]=;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]==f||vis[To[i]]) continue;
dfs(To[i],u);
sz[u]+=sz[To[i]];
}
}
void cal()
{
rep(i,,times+){
memset(dp1[i],,sizeof(dp1[i]));
memset(dp2[i],,sizeof(dp2[i]));
}
dp1[times+][]=;
for(int i=times;i>=;i--){
int x=w[p[i]];
rep(j,,min(qM,M/x)) {
int k=j*x;
if(k<=qM) MOD(dp1[i][k]+=dp1[i+][j]);
else MOD(dp2[i][M/k]+=dp1[i+][j]);
}
rep(j,x,qM) {
MOD(dp2[i][j/x]+=dp2[i+][j]);
}
rep(j,,qM) MOD(dp1[i][j]+=dp1[i+sz[p[i]]][j]);
rep(j,,qM) MOD(dp2[i][j]+=dp2[i+sz[p[i]]][j]);
}
rep(i,,qM) MOD(ans+=dp1[][i]);
rep(i,,qM) MOD(ans+=dp2[][i]);
ans--; //减去为空的情况
if(ans<) ans+=Mod;
}
void solve(int u) //分治
{
vis[u]=;
times=; dfs(u,);
cal();
for(int i=Laxt[u];i;i=Next[i]){
if(vis[To[i]]) continue;
SZ=sz[To[i]]; rt=;
getroot(To[i],);
solve(rt);
}
}
int main()
{
int T,N,u,v;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M); qM=sqrt(M);
rep(i,,N) scanf("%d",&w[i]);
rep(i,,N) Laxt[i]=vis[i]=; cnt=;
rep(i,,N-){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
SZ=N; rt=; getroot(,);
ans=; solve(rt);
printf("%d\n",ans);
}
return ;
}
HDU - 6643: Ridiculous Netizens(点分治+依赖背包+空间优化)的更多相关文章
- Hdu 6268 点分治 树上背包 bitset 优化
给你一颗大小为n(3000)的树,树上每个点有点权(100000),再给你一个数m(100000) i为1~m,问树中是否存在一个子图,使得权值为i. 每次solve到一个节点 用一个bitset维护 ...
- [HDU多校]Ridiculous Netizens
[HDU多校]Ridiculous Netizens 点分治 分成两个部分:对某一点P,连通块经过P或不经过P. 经过P采用树形依赖背包 不经过P的部分递归计算 树型依赖背包 v点必须由其父亲u点转移 ...
- 依赖背包优化——hdu1561
傻逼依赖背包的优化 #include<bits/stdc++.h> using namespace std; #define N 205 ]; int head[N],tot,n,m,a[ ...
- 依赖背包变形——poj1947(经典)
/*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...
- 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)
The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...
- BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
BZOJ 题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个.求花费为\(m\)时最大价值. 令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值 ...
- hdu 1561 The more, The Better (依赖背包 树形dp)
题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...
- HDU 3449 依赖背包
这道题虽然水水的,但是还是成功地给我增加了10多个WA. 最开始拿着题,一看,依赖背包嘛~直接DFS树形DP嗨起来,甚至连内存都没有算一下,3MLE: 然后又仔细看了一下题,没有必要用树形背包来做嘛, ...
- HDU 2159 FATE(二维费用背包)
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
随机推荐
- IO流一些问题的总结
字节流的继承体系 字符流的继承体系 字符编码是什么?常见的字符编码表有哪些? 字符编码(英语:Character encoding)也称字集码,是把字符集中的字符编码为指定集合中某一对象,以便文本在计 ...
- Android.mk基础
1.前言 Android.mk用于向编译系统描述源文件和共享库,它实际上是编译系统解析一次或多次的微小GNU makefile片段.它的语法支持将源文件分组为模块,模块是静态库.共享库或独立的可执行文 ...
- 内网服务器离线编译安装mysql5.7并调优
目录 内网服务器离线编译安装mysql5.7并调优 前言 关于MySQL 一.MySQL安装篇 部署环境 前期准备工具 挂载系统ISO镜像,配置yum源 二.MySQL调优篇 1.对MySQL进行安全 ...
- CSS3移动端vw+rem不依赖JS实现响应式布局
1.前言 (1)vw/vh介绍 在使用之前,我们先简单了解一下什么是vw和rem以及它们的作用,vw是css3出现的一个新单位,它是"view width"缩写,定义为把当前屏幕分 ...
- Java自学-类和对象 类属性
Java的类属性和对象属性 当一个属性被static修饰的时候,就叫做类属性,又叫做静态属性 当一个属性被声明成类属性,那么所有的对象,都共享一个值 与对象属性对比: 不同对象的 对象属性 的值都可能 ...
- Linux平台上常用到的c语言开发程序
Linux操作系统上大部分应用程序都是基于C语言开发的.小编将简单介绍Linux平台上常用的C语言开发程序. 一.C程序的结构1.函数 必须有一个且只能有一个主函数main(),主函数的名为main. ...
- C++动态规划求解0-1背包问题
问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大? 细节须知: 暂无. 算法原理: a.最优子结构性质 ...
- FindWindow和FindWindowEx函数使用
FindWindow( lpClassName, {窗口的类名} lpWindowName: PChar {窗口的标题} ): HWND; {返回窗口的 ...
- Appium中app的元素定位
app定位方式,本文只讲Android手机的定位方式. 前提条件是adb连接到模拟器或者是手机(具体连接方式这里不再讲解),证明已连接到设备 adb devices app元素定位工具一:UI Aut ...
- 【转】Unobtrusive Ajax的使用
[转]Unobtrusive Ajax的使用 Ajax (Asynchronous JavaScript and XML 的缩写),如我们所见,这个概念的重点已经不再是XML部分,而是 Asynchr ...