目录

  感受野

  多个小卷积核连续卷积和单个大卷积核卷积的作用相同

  小卷积核的优势

  参考资料


感受野

在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域,如下图所示:

返回目录

多个小卷积核连续卷积和单个大卷积核卷积的作用相同

像LeNet、AlexNet网络,都是用了较大的卷积核,目的是提取出输入图像更大邻域范围的信息,一般是卷积与池化操作相连。而小卷积核同样可以做到这个效果,其结构可能有多个卷积相连,然后再连接池化层。

以一个5*5的卷积核举例:

以2个3*3的卷积核举例:

结论:

使用3*3的卷积核连续卷积2次可以达到5*5的卷积核卷积1次提取特征图的能力;

同理,使用3*3的卷积核连续卷积3次可以达到7*7的卷积核卷积1次提取特征图的能力;

返回目录

小卷积核的优势

优势一:

整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力。

优势二:

减少了网络参数。

以3个3*3的级联卷积代替1个7*7的卷积为例:可以减少7*7-3*3*3=22个参数,减少了45%的参数。

以2个3*3的级联卷积代替1个5*5的卷积为例:可以减少5*5-2*3*3=7个参数,减少了28%的参数。

优势三:

减少了计算量

以3个3*3的级联卷积代替1个7*7的卷积为例:可以减少7*7*L-3*3*3*L=22*L次计算,减少了45%的计算量。

以2个3*3的级联卷积代替1个5*5的卷积为例:可以减少5*5*L-2*3*3*L=7*L次计算,减少了28%的计算量。

返回目录

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

《深-度-学-习-核-心-技-术-与-实-践》

返回目录

深度学习面试题16:小卷积核级联卷积VS大卷积核卷积的更多相关文章

  1. 深度学习面试题27:非对称卷积(Asymmetric Convolutions)

    目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...

  2. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

  3. 深度学习面试题13:AlexNet(1000类图像分类)

    目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...

  4. 深度学习面试题26:GoogLeNet(Inception V2)

    目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...

  5. 深度学习面试题20:GoogLeNet(Inception V1)

    目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二 ...

  6. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

  7. 深度学习面试题17:VGGNet(1000类图像分类)

    目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的 ...

  8. [DeeplearningAI笔记]神经网络与深度学习2.11_2.16神经网络基础(向量化)

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.11向量化 向量化是消除代码中显示for循环语句的艺术,在训练大数据集时,深度学习算法才变得高效,所以代码运行的非常快十分重要.所以在深度学 ...

  9. keras搭建深度学习模型的一些小tips

    定义模型两种方法:  1.sequential 类仅用于层的线性堆叠,这是目前最常用的网络架构 2.函数式API,用于层组成的有向无环图,让你可以构建任意形式的架构 from keras import ...

随机推荐

  1. oracle批量操作

    https://stackoverflow.com/questions/39576/best-way-to-do-multi-row-insert-in-oracle 1 批量insert 方式一: ...

  2. 小米5s plus刷机

    1. 先去这里解锁 .http://www.miui.com/unlock/done.html 2.再去开发者选项里面,将手机账号和解锁手机绑定. 3.使用解锁工具解锁 4.下载安装奇兔刷机 http ...

  3. p5.BTC-网络

    Bitcoin工作在应用层,网络层是P2P . Bitcoin网络通信的设计原则是 simple  robust ,but not efficient. 每个节点维护一个邻居节点的集合,消息传播采取 ...

  4. 漫谈五种IO模型(主讲IO多路复用)

    首先引用levin的回答让我们理清楚五种IO模型 1.阻塞I/O模型 老李去火车站买票,排队三天买到一张退票. 耗费:在车站吃喝拉撒睡 3天,其他事一件没干. 2.非阻塞I/O模型 老李去火车站买票, ...

  5. Vue项目中自动将px转换为rem

    一.配置与安装步骤: 1.在 Vue 项目的 src 文件夹下创建一个 config 文件夹: 2.在 config 文件夹中创建 rem.js: 3.将以下代码复制到 rem.js 中: // 基准 ...

  6. Linux 逻辑卷扩容

    Linux 逻辑卷扩容 关键词:pv(物理卷).vg(卷组) .lv(逻辑卷) 今天在用linux过程中,根分区容量不够了,突然想起来好久没更新博客,就来说说逻辑卷扩容的问题吧. 1.扩容前的检查 记 ...

  7. Nmap扫描工具实验报告

    实验报告 实验内容 通过ping进行操作系统探测 利用Zenmap/Nmap进行TCP connet扫描.TCP SYN扫描和操作系统扫描 实验目的 了解扫描的一般步骤 熟练使用ping命令并能够进行 ...

  8. 使用lua脚本在nginx上进行灰度流量转发

    参考资料 idea+openresty+lua开发环境搭建 OpenResty最佳实践 灰度发布基于cookie分流 从请求中获取值 -- 从请求中获取请求头为 Sec-WebSocket-Proto ...

  9. 【DP】 路面修整 usaco 2008 feb_gold

    题目描述: ``` FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段 ...

  10. yaml文件

    apiVersion: apps/v1beta1 kind: Deployment metadata: annotations: deployment.kubernetes.io/revision: ...