【洛谷 P5110】 块速递推(矩阵加速,分块打表)
题目链接
掌握了分块打表法了。原来以前一直想错了。。。
块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表。
然后就可以做到\(O(1)\)查询了。
比如要求\(A^{n}\),只需要算出\(biao[n/size]*pow[n\mod size]\)就好了。
然后我是看题解用了通项公式。。事实上套个矩阵也没有影响。
#include <cstdio>
#include <cmath>
#define ll unsigned long long
#define MOD 1000000007
namespace Mker{
ll SA,SB,SC;
void init(){scanf("%llu%llu%llu",&SA,&SB,&SC);}
ll rand(){
SA^=SA<<32,SA^=SA>>13,SA^=SA<<1;
ll t=SA;
SA=SB,SB=SC,SC^=t^SA;return SC;
}
}
int T, ans, tmp, a[1000010], b[1000010], c[1000010], d[1000010], e, size;
int n;
inline int f_pa(int k){
return (long long)a[k / size] * c[k % size] % MOD;
}
inline int f_pb(int k){
return (long long)b[k / size] * d[k % size] % MOD;
}
inline void make_a(int n, int k){
tmp = 1;
while(k){
if(k & 1) tmp = (long long)tmp * n % MOD;
n = (long long)n * n % MOD;
k >>= 1;
}
a[e] = tmp;
}
inline void make_b(int n, int k){
tmp = 1;
while(k){
if(k & 1) tmp = (long long)tmp * n % MOD;
n = (long long)n * n % MOD;
k >>= 1;
}
b[e] = tmp;
}
int main(){
size = sqrt(1000000006); c[0] = d[0] = 1;
for(int i = 0; i <= 1000000006; i += size, ++e)
make_a(94153035, i), make_b(905847205, i);
for(int i = 1; i < size; ++i) c[i] = (long long)c[i - 1] * 94153035 % MOD;
for(int i = 1; i < size; ++i) d[i] = (long long)d[i - 1] * 905847205 % MOD;
scanf("%d", &T);
Mker::init();
while(T--){
n = Mker::rand() % 1000000006;
ans ^= (233230706ll * (f_pa(n) - f_pb(n)) % MOD + MOD) % MOD;
}
printf("%d\n", ans);
return 0;
}
【洛谷 P5110】 块速递推(矩阵加速,分块打表)的更多相关文章
- 洛谷 P5110 块速递推
题目大意: 给定一个数列a满足递推式 \(An=233*an-1+666*an-2,a0=0,a1=1\) 求这个数列第n项模\(10^9+7\)的值,一共有T组询问 \(T<=10^7\) \ ...
- 洛谷P5110 块速递推 [分块]
传送门 思路 显然可以特征根方程搞一波(生成函数太累),得到结果: \[ a_n=\frac 1 {13\sqrt{337}} [(\frac{233+13\sqrt{337}}{2})^n-(\fr ...
- P5110 块速递推-光速幂、斐波那契数列通项
P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...
- P5110 块速递推
传送门 为啥我就没看出来有循环节呢-- 打表可得,这个数列是有循环节的,循环节为\(10^9+6\),然后分块预处理,即取\(k=sqrt(10^9+6)\),然后分别预处理出转移矩阵\(A\)的\( ...
- P5110 【块速递推】
太菜了,不会生成函数,于是用特征方程来写的这道题 首先我们知道,形如\(a_n=A*a_{n-1}+B*a_{n-2}\)的特征方程为\(x^2=A*x+B\) 于是此题的递推式就是:\(x^2=23 ...
- Luogu5110 块速递推
题面 题解 线性常系数齐次递推sb板子题 $a_n=233a_{n-1}+666a_{n-2}$的特征方程为 $$ x^2=233x+666 \\ x^2-233x+666=0 \\ x_1=\fra ...
- 洛谷P1240-诸侯安置+递推非搜索
诸侯安置 这道题是一题递推题,一开始自己不知道,用了搜索,只过了三个样例: 两两相同的合并, 成 1,1,3,3,5,5........n*2-1; 然后我们会容易发现一种不同与搜索的动态规划做法. ...
- P5110-块速递推【特征方程,分块】
正题 题目链接:https://www.luogu.com.cn/problem/P5110 题目大意 数列\(a\)满足 \[a_n=233a_{n-1}+666a_{n-2},a_0=0,a_1= ...
- 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]
题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...
随机推荐
- ubuntu 安装lua错误
转自:http://www.cnblogs.com/softidea/archive/2016/03/02/5236498.html lua.c:80:31: fatal error: readlin ...
- 线程同步(使用了synchronized)和线程通讯(使用了wait,notify)
线程同步 什么是线程同步? 当使用多个线程来访问同一个数据时,非常容易出现线程安全问题(比如多个线程都在操作同一数据导致数据不一致),所以我们用同步机制来解决这些问题. 实现同步机制有两个方法:1.同 ...
- android eclipse 添加libs文件夹
导入一个项目发现没有libs文件夹,后来z自己新建了个lib文件夹,但是总是不行,后来发现错了,应该是libs文件夹.建完了之后,系统会自动在build path中把这个文件夹添加进来的:个人无须操作
- EJB介绍
EJB定义: 被称为java企业bean,服务器端组件,核心应用是部署分布式应用程序.用它部署的系统不限定平台.实际上EJB是一种产品,描述了应用组件要解决的标准. 标准: 可扩展 (Scalable ...
- 文件传输底层是二进制 所以在传输前可以通过 InputStreamer 指定传输出的编码格式
文件传输底层是二进制 所以在传输前可以通过 InputStreamer 指定传输出的编码格式
- Android Service 生命周期
Service概念及用途: Android中的服务,它与Activity不同,它是不能与用户交互的,不能自己启动的,运行在后台的程序,如果我们退出应用时,Service进程并没有结束,它仍然在后台运行 ...
- BZOJ3156: 防御准备 【斜率优化dp】
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2207 Solved: 933 [Submit][Status][Discu ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
- bzoj1901: Zju2112 Dynamic Rankings(BIT套主席树)
带修改的题主席树不记录前缀,只记录单点,用BIT统计前缀. 对于BIT上每一个点建一棵主席树,修改和询问的时候用BIT跑,在主席树上做就行了. 3k4人AC的题#256...应该不算慢 #incl ...
- Java的四种引用?用到的场景?
在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说,只有对象处于可触及(reachable)状态,程序才能使用它.从JDK 1.2版本开始,把对象的引用分 ...