使用 scikit-learn 实现多类别及多标签分类算法
多标签分类格式
对于多标签分类问题而言,一个样本可能同时属于多个类别。如一个新闻属于多个话题。这种情况下,因变量yy需要使用一个矩阵表达出来。
而多类别分类指的是y的可能取值大于2,但是y所属类别是唯一的。它与多标签分类问题是有严格区别的。所有的scikit-learn分类器都是默认支持多类别分类的。但是,当你需要自己修改算法的时候,也是可以使用scikit-learn
实现多类别分类的前期数据准备的。
多类别或多标签分类问题,有两种构建分类器的策略:One-vs-All及One-vs-One。下面,通过一些例子进行演示如何实现这两类策略。
#
from sklearn.preprocessing import MultiLabelBinarizer
y = [[2,3,4],[2],[0,1,3],[0,1,2,3,4],[0,1,2]]
MultiLabelBinarizer().fit_transform(y)
array([[0, 0, 1, 1, 1],
[0, 0, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]])
One-Vs-The-Rest策略
这个策略同时也称为One-vs-all策略,即通过构造K个判别式(K为类别的个数),第ii个判别式将样本归为第ii个类别或非第ii个类别。这种分类方法虽然比较耗时间,但是能够通过每个类别对应的判别式获得关于该类别的直观理解(如文本分类中每个话题可以通过只属于该类别的高频特征词区分)。
多类别分类学习
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X,y = iris.data,iris.target
OneVsRestClassifier(LinearSVC(random_state = 0)).fit(X,y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
多标签分类学习
Kaggle上有一个关于多标签分类问题的竞赛:Multi-label classification of printed media articles to topics。
关于该竞赛的介绍如下:
This is a multi-label classification competition for articles coming from Greek printed media. Raw data comes from the scanning of print media, article segmentation, and optical character segmentation, and therefore is quite noisy. Each article is examined by a human annotator and categorized to one or more of the topics being monitored. Topics range from specific persons, products, and companies that can be easily categorized based on keywords, to more general semantic concepts, such as environment or economy. Building multi-label classifiers for the automated annotation of articles into topics can support the work of human annotators by suggesting a list of all topics by order of relevance, or even automate the annotation process for media and/or categories that are easier to predict. This saves valuable time and allows a media monitoring company to expand the portfolio of media being monitored.
我们从该网站下载相应的数据,作为多标签分类的案例学习。
数据描述
这个文本数据集已经用词袋模型进行形式化表示,共201561个特征词,每个文本对应一个或多个标签,共203个分类标签。该网站提供了两种数据格式:ARFF
和LIBSVM
,ARFF
格式的数据主要适用于weka,而LIBSVM
格式适用于matlab中的LIBSVM
模块。这里,我们采用LIBSVM
格式的数据。
数据的每一行以逗号分隔的整数序列开头,代表类别标签。紧接着是以\t分隔的id:value
对。其中,id
为特征词的ID,value
为特征词在该文档中的TF-IDF
值。
形式如下。
58,152 833:0.032582 1123:0.003157 1629:0.038548 ...
数据载入
# load modules
import os
import sys
import numpy as np
from sklearn.datasets import load_svmlight_file
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
from sklearn import metrics
# set working directory
os.chdir("D:\\my_python_workfile\\Thesis\\kaggle_multilabel_classification")
# read files
X_train,y_train = load_svmlight_file("./data/wise2014-train.libsvm",dtype=np.float64,multilabel=True)
X_test,y_test = load_svmlight_file("./data/wise2014-test.libsvm",dtype = np.float64,multilabel=True)
模型拟合及预测
# transform y into a matrix
mb = MultiLabelBinarizer()
y_train = mb.fit_transform(y_train)
# fit the model and predict
clf = OneVsRestClassifier(LogisticRegression(),n_jobs=-1)
clf.fit(X_train,y_train)
pred_y = clf.predict(X_test)
模型评估
由于没有关于测试集的真实标签,这里看看训练集的预测情况。
# training set result
y_predicted = clf.predict(X_train)
#report
#print(metrics.classification_report(y_train,y_predicted))
import numpy as np
np.mean(y_predicted == y_train)
0.99604661023482433
保存结果
# write the output
out_file = open("pred.csv","w")
out_file.write("ArticleId,Labels\n")
id = 64858
for i in xrange(pred_y.shape[0]):
label = list(mb.classes_[np.where(pred_y[i,:]==1)[0]].astype("int"))
label = " ".join(map(str,label))
if label == "": # if the label is empty
label = "103"
out_file.write(str(id+i)+","+label+"\n")
out_file.close()
One-Vs-One策略
One-Vs-One策略即是两两类别之间建立一个判别式,这样,总共需要K(K−1)/2K(K−1)/2个判别式,最后通过投票的方式确定样本所属类别。
多类别分类学习
from sklearn import datasets
from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X,y = iris.data,iris.target
OneVsOneClassifier(LinearSVC(random_state = 0)).fit(X,y).predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
参考文献
http://yphuang.github.io/blog/2016/04/22/Multiclass-and-Multilabel-algorithms-Implementation-in-sklearn/
使用 scikit-learn 实现多类别及多标签分类算法的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
- 如何使用scikit—learn处理文本数据
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...
- Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)
所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
随机推荐
- Java中的文件操作(一)RandomAccessFile
今天,学到的是java中的文件操作. Java.IO.File Java中操作文件用到RandomAccessFile类,既可以读取文件内容,也可以向文件输出数据,但不同与普通输入/输出流的是Rand ...
- JavaScript的深拷贝与浅拷贝
深拷贝和浅拷贝是在面试中经常遇到的问题.今天在这里总结一下. 深拷贝与浅拷贝的问题,涉及到JavaScript的变量类型,先来说说变量的类型,变量类型包括基本类型和引用类型. 基本类型:Undefin ...
- [转]MySQL创建用户与授权方法
注:我的运行环境是widnows xp professional + MySQL5.0 一, 创建用户: 命令:CREATE USER 'username'@'host' IDENTIFIED BY ...
- WPF中的动画——(五)关键帧动画
与 From/To/By 动画类似,关键帧动画以也可以以动画形式显示目标属性值. 和From/To/By 动画不同的是, From/To/By 动画只能控制在两个状态之间变化,而关键帧动画则可以在多个 ...
- VS2010 C++ 创建COM组件
1.项目中要使用到com组件,于是了解了一下com,并根据<C#高级编程>中关于com的介绍用vs创建了一下com,用于实验.以下均根据书中的demo做一遍,熟悉一下而已. 2.创建CoM ...
- Android 自己收集的开源项目集合(持续更新 2018.2.5)
2017.12.21 1.仿QQ说说发图片选择框架 https://github.com/yaozs/ImageShowPicker 2.炫酷开屏动画框架 https://github.com/Jos ...
- jquer回显选中select下拉框
公司使用的框架比较旧,没有使用el等表达式. <% String context = request.getContextPath(); String index = (String)reque ...
- js中定义变量的三种方式const,val,let 的区别
js中三种定义变量的方式const, var, let的区别. 1.const定义的变量不可以修改,而且必须初始化. 1 const b = 2;//正确 2 // const b;//错误,必须初始 ...
- maven本地仓库地址的设置
对于大公司的jenkins来说,仓库是很大的,那么存储仓库的目录空间一定要足够大才可以. 可以对linux进行外挂,实现磁盘扩容,把仓库挂在外挂上. 默认情况下,mvn的配置文件在~/.m2/sett ...
- nginx安装和配置
一.安装:yum install nginx service nginx restart/start/check/status/... 二.配置:官网文档 http://nginx.org/en/do ...