【BZOJ2653】middle

Description

一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。给你一个
长度为n的序列s。回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。位置也从0开始标号。我会使用一些方式强制你在线。

Input

第一行序列长度n。接下来n行按顺序给出a中的数。
接下来一行Q。然后Q行每行a,b,c,d,我们令上个询问的答案是
x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的
要询问的a=q[0],b=q[1],c=q[2],d=q[3]。  
输入保证满足条件。
第一行所谓“排过序”指的是从大到小排序!

Output

Q行依次给出询问的答案。

Sample Input

5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
271451044
271451044
969056313

Sample Output

HINT

0:n,Q<=100
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000

题解:好吧这题不看题解还真的很难想~

首先二分中位数还是挺好像的,但问题是怎么判断一个中位数是否可行。一个中位数mid可行的条件是序列中(≥mid的数的个数)≥(<mid的数的个数),也就是说,我们将比≥mid的数看成1,<mid的数看成-1,那么需要存在一段区间,使得区间和非负。这又和可持久化线段树有什么关系呢?

我们将所有数排序,然后令1-n的初值都是1,然后将n个数从小到大扔到可持久化线段树中去,并将对应位置变成-1,这样就很好的满足了所给条件。现在问题就是如何判断[a,b]-[c,d]中有没有符合条件的区间,只需要对线段树维护区间连续子段和,最大连续前缀子段和,最大后缀子段和,然后搞一搞就行了。(小白逛公园的简化)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=20010;
int n,m,maxx,minn,tot,ans;
struct sag
{
int ls,rs,sum,lm,rm,sm;
}s[maxn*1000];
struct node
{
int num,org;
}p[maxn];
int q[10],rt[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int max(int a,int b,int c)
{
return max(max(a,b),c);
}
void pushup(int x)
{
s[x].lm=max(s[s[x].ls].lm,s[s[x].ls].sum+s[s[x].rs].lm,0);
s[x].rm=max(s[s[x].rs].rm,s[s[x].rs].sum+s[s[x].ls].rm,0);
s[x].sm=max(s[s[x].ls].sm,s[s[x].rs].sm,s[s[x].ls].rm+s[s[x].rs].lm);
s[x].sum=s[s[x].ls].sum+s[s[x].rs].sum;
}
void build(int l,int r,int &x)
{
if(!x) x=++tot;
if(l==r)
{
s[x].sum=s[x].sm=s[x].lm=s[x].rm=1;
return;
}
int mid=l+r>>1;
build(l,mid,s[x].ls),build(mid+1,r,s[x].rs);
pushup(x);
}
void insert(int x,int &y,int l,int r,int pos)
{
if(r<pos) return ;
y=++tot;
if(l==r)
{
s[y].sum=-1,s[y].lm=s[y].rm=s[y].sm=0;
return ;
}
int mid=l+r>>1;
if(pos<=mid) s[y].rs=s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos);
else s[y].ls=s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos);
pushup(y);
}
bool cmp(node a,node b)
{
return a.num<b.num;
}
int qs(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].sum;
int mid=l+r>>1;
if(b<=mid) return qs(l,mid,s[x].ls,a,b);
if(a>mid) return qs(mid+1,r,s[x].rs,a,b);
return qs(l,mid,s[x].ls,a,b)+qs(mid+1,r,s[x].rs,a,b);
}
int ql(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].rm;
int mid=l+r>>1;
if(b<=mid) return ql(l,mid,s[x].ls,a,b);
if(a>mid) return ql(mid+1,r,s[x].rs,a,b);
return max(ql(l,mid,s[x].ls,a,b)+qs(mid+1,r,s[x].rs,a,b),ql(mid+1,r,s[x].rs,a,b));
}
int qr(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].lm;
int mid=l+r>>1;
if(b<=mid) return qr(l,mid,s[x].ls,a,b);
if(a>mid) return qr(mid+1,r,s[x].rs,a,b);
return max(qr(mid+1,r,s[x].rs,a,b)+qs(l,mid,s[x].ls,a,b),qr(l,mid,s[x].ls,a,b));
}
int solve(int sta)
{
int a=ql(1,n,rt[sta-1],q[0],q[1]-1);
int b=qs(1,n,rt[sta-1],q[1],q[2]);
int c=qr(1,n,rt[sta-1],q[2]+1,q[3]);
if(a+b+c>=0) return 1;
return 0;
}
int main()
{
n=rd();
int i,j,l,r,mid;
for(i=1;i<=n;i++) p[i].num=rd(),p[i].org=i,maxx=max(maxx,p[i].num),minn=min(minn,p[i].num);
build(1,n,rt[0]);
sort(p+1,p+n+1,cmp);
for(i=1;i<=n;i++) insert(rt[i-1],rt[i],1,n,p[i].org);
m=rd();
for(i=1;i<=m;i++)
{
for(j=0;j<4;j++) q[j]=(rd()+ans)%n+1;
sort(q+0,q+4);
l=1,r=n+1;
while(l<r)
{
mid=l+r>>1;
if(solve(mid)) l=mid+1;
else r=mid;
}
ans=p[l-1].num;
printf("%d\n",ans);
}
return 0;
}

【BZOJ2653】middle 二分+可持久化线段树的更多相关文章

  1. BZOJ 4556(后缀数组+主席树求前驱后继+二分||后缀数组+二分+可持久化线段树)

    换markdown写了.. 题意: 给你一个1e5的字符串,1e5组询问,求\([l_1,r_1]\)的所有子串与\([l_2,r_2]\)的lcp 思路: 首先可以发现答案是具有单调性的,我们考虑二 ...

  2. 【XSY2720】区间第k小 整体二分 可持久化线段树

    题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...

  3. bzoj 2653 middle (可持久化线段树)

    middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1981  Solved: 1097[Submit][Status][Discuss] D ...

  4. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  5. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  6. BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)

    BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...

  7. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  8. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  9. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

随机推荐

  1. struts2中 jsp:forward 失败原因及解决办法

    问题:在Struts2中<jsp:forward page="xxx.action"></jsp:forward>失效了,不但调转不过去还报404错误.不知 ...

  2. asp.net 完善注册登录+sqlite数据库

    结合sqlite数据库,完善asp.net制作的web网页中的注册和登录操作. 1. Account-Register.aspx <%@ Page Title="" Lang ...

  3. Mysql删除重复数据保留最小的id

    在网上查找删除重复数据保留id最小的数据,方法如下: DELETE FROM people WHERE peopleName IN ( SELECT peopleName FROM people GR ...

  4. FZU 2087 统计树边【MST相关】

     Problem 2087 统计树边 Accept: 212    Submit: 651 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Prob ...

  5. 64位Windows系统如何配置32位ODBC数据源

    在64位Windows系统中,默认“数据源(ODBC)”是64位的,包括“控制面板->管理工具->数据源 ”或在“运行”中直接运行“ODBCAD32”程序.如果客户端是32位应用程序,仍然 ...

  6. NoReverseMatch at /salesman/zhuce/ Reverse for '/zhuce/' with arguments '()' and keyword arguments '{}' not found. 0 pattern(s) tried: []

    NoReverseMatch at /salesman/zhuce/ Reverse for '/zhuce/' with arguments '()' and keyword arguments ' ...

  7. atitit.验证码识别step2------剪贴板ClipBoard copy image图像 attilax总结

    atitit.验证码识别step2------剪贴板ClipBoard copy image图像 attilax总结 剪贴板(ClipBoard)是内存中的一块区域,是Windows内置的一个非常有用 ...

  8. springboot整合docker部署(两种构建Docker镜像方式)--2019-3-5转

    原文:https://www.cnblogs.com/shamo89/p/9201513.html 项目结构 package hello; import org.springframework.boo ...

  9. 735. Replace With Greatest From Right【medium】

    Given an array of integers, replace every element with the next greatest element (greatest element o ...

  10. 李洪强iOS开发之Xcode快捷键

    14个Xcode中常用的快捷键操作   在Xcode 6中有许多快捷键的设定可以使得你的编程工作更为高效,对于在代码文件中快速导航.定位Bug以及新增应用特性都是极有效的. 当然,你戳进这篇文章的目的 ...