【BZOJ2653】middle

Description

一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。给你一个
长度为n的序列s。回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。位置也从0开始标号。我会使用一些方式强制你在线。

Input

第一行序列长度n。接下来n行按顺序给出a中的数。
接下来一行Q。然后Q行每行a,b,c,d,我们令上个询问的答案是
x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的
要询问的a=q[0],b=q[1],c=q[2],d=q[3]。  
输入保证满足条件。
第一行所谓“排过序”指的是从大到小排序!

Output

Q行依次给出询问的答案。

Sample Input

5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
271451044
271451044
969056313

Sample Output

HINT

0:n,Q<=100
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000

题解:好吧这题不看题解还真的很难想~

首先二分中位数还是挺好像的,但问题是怎么判断一个中位数是否可行。一个中位数mid可行的条件是序列中(≥mid的数的个数)≥(<mid的数的个数),也就是说,我们将比≥mid的数看成1,<mid的数看成-1,那么需要存在一段区间,使得区间和非负。这又和可持久化线段树有什么关系呢?

我们将所有数排序,然后令1-n的初值都是1,然后将n个数从小到大扔到可持久化线段树中去,并将对应位置变成-1,这样就很好的满足了所给条件。现在问题就是如何判断[a,b]-[c,d]中有没有符合条件的区间,只需要对线段树维护区间连续子段和,最大连续前缀子段和,最大后缀子段和,然后搞一搞就行了。(小白逛公园的简化)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=20010;
int n,m,maxx,minn,tot,ans;
struct sag
{
int ls,rs,sum,lm,rm,sm;
}s[maxn*1000];
struct node
{
int num,org;
}p[maxn];
int q[10],rt[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int max(int a,int b,int c)
{
return max(max(a,b),c);
}
void pushup(int x)
{
s[x].lm=max(s[s[x].ls].lm,s[s[x].ls].sum+s[s[x].rs].lm,0);
s[x].rm=max(s[s[x].rs].rm,s[s[x].rs].sum+s[s[x].ls].rm,0);
s[x].sm=max(s[s[x].ls].sm,s[s[x].rs].sm,s[s[x].ls].rm+s[s[x].rs].lm);
s[x].sum=s[s[x].ls].sum+s[s[x].rs].sum;
}
void build(int l,int r,int &x)
{
if(!x) x=++tot;
if(l==r)
{
s[x].sum=s[x].sm=s[x].lm=s[x].rm=1;
return;
}
int mid=l+r>>1;
build(l,mid,s[x].ls),build(mid+1,r,s[x].rs);
pushup(x);
}
void insert(int x,int &y,int l,int r,int pos)
{
if(r<pos) return ;
y=++tot;
if(l==r)
{
s[y].sum=-1,s[y].lm=s[y].rm=s[y].sm=0;
return ;
}
int mid=l+r>>1;
if(pos<=mid) s[y].rs=s[x].rs,insert(s[x].ls,s[y].ls,l,mid,pos);
else s[y].ls=s[x].ls,insert(s[x].rs,s[y].rs,mid+1,r,pos);
pushup(y);
}
bool cmp(node a,node b)
{
return a.num<b.num;
}
int qs(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].sum;
int mid=l+r>>1;
if(b<=mid) return qs(l,mid,s[x].ls,a,b);
if(a>mid) return qs(mid+1,r,s[x].rs,a,b);
return qs(l,mid,s[x].ls,a,b)+qs(mid+1,r,s[x].rs,a,b);
}
int ql(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].rm;
int mid=l+r>>1;
if(b<=mid) return ql(l,mid,s[x].ls,a,b);
if(a>mid) return ql(mid+1,r,s[x].rs,a,b);
return max(ql(l,mid,s[x].ls,a,b)+qs(mid+1,r,s[x].rs,a,b),ql(mid+1,r,s[x].rs,a,b));
}
int qr(int l,int r,int x,int a,int b)
{
if(a>b) return 0;
if(a<=l&&r<=b) return s[x].lm;
int mid=l+r>>1;
if(b<=mid) return qr(l,mid,s[x].ls,a,b);
if(a>mid) return qr(mid+1,r,s[x].rs,a,b);
return max(qr(mid+1,r,s[x].rs,a,b)+qs(l,mid,s[x].ls,a,b),qr(l,mid,s[x].ls,a,b));
}
int solve(int sta)
{
int a=ql(1,n,rt[sta-1],q[0],q[1]-1);
int b=qs(1,n,rt[sta-1],q[1],q[2]);
int c=qr(1,n,rt[sta-1],q[2]+1,q[3]);
if(a+b+c>=0) return 1;
return 0;
}
int main()
{
n=rd();
int i,j,l,r,mid;
for(i=1;i<=n;i++) p[i].num=rd(),p[i].org=i,maxx=max(maxx,p[i].num),minn=min(minn,p[i].num);
build(1,n,rt[0]);
sort(p+1,p+n+1,cmp);
for(i=1;i<=n;i++) insert(rt[i-1],rt[i],1,n,p[i].org);
m=rd();
for(i=1;i<=m;i++)
{
for(j=0;j<4;j++) q[j]=(rd()+ans)%n+1;
sort(q+0,q+4);
l=1,r=n+1;
while(l<r)
{
mid=l+r>>1;
if(solve(mid)) l=mid+1;
else r=mid;
}
ans=p[l-1].num;
printf("%d\n",ans);
}
return 0;
}

【BZOJ2653】middle 二分+可持久化线段树的更多相关文章

  1. BZOJ 4556(后缀数组+主席树求前驱后继+二分||后缀数组+二分+可持久化线段树)

    换markdown写了.. 题意: 给你一个1e5的字符串,1e5组询问,求\([l_1,r_1]\)的所有子串与\([l_2,r_2]\)的lcp 思路: 首先可以发现答案是具有单调性的,我们考虑二 ...

  2. 【XSY2720】区间第k小 整体二分 可持久化线段树

    题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n ...

  3. bzoj 2653 middle (可持久化线段树)

    middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1981  Solved: 1097[Submit][Status][Discuss] D ...

  4. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  5. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  6. BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)

    BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...

  7. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  8. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  9. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

随机推荐

  1. php处理行业分类数据

    实现步骤: 1.将excel表格存储为后缀名为 .csv格式的文件: 2.将.csv格式文件导入到mysql数据库中: 3.通过条件查询将所需要的数据查出并导入另一个数据表中: 下面是一些php片段: ...

  2. Linux命令-网络命令:traceroute

    首先需要设置VM里面的linux系统能够上网.菜单项->虚拟机->设置,选择NAT模式 菜单项->编辑->虚拟网络编辑器->VMnet8 NAT模式->NAT设置, ...

  3. Quartz.NET 实现定时任务调度

    Quartz.NET Quick Start Guide Welcome to the Quick Start Guide for Quartz.NET. As you read this guide ...

  4. FTP软件发送"AUTH TLS"提示 无法连接到服务器

    响应: 220-FileZilla Server version 0.9.24 beta 响应: 220-written by Tim Kosse (Tim.Kosse@gmx.de) 响应: 220 ...

  5. Spark高级数据分析-第2章 用Scala和Spark进行数据分析

    2.4 小试牛刀:Spark shell和SparkContext 本章使用的资料来自加州大学欧文分校机器学习资料库(UC Irvine Machine Learning Repository),这个 ...

  6. @property (nonatomic,retain)中的nonatom和retain的意思

    转自:http://yuanshoupeng2005.blog.163.com/blog/static/68235027201235113952886/ http://baike.baidu.com/ ...

  7. SQL 数据库分页语句

    declare @pagesize integer,@cpage integer; ; ; SELECT TOP (@pagesize) * FROM (SELECT row_number() ove ...

  8. python-list.sort && lambda

    dictionary是一个有元组组成的list,变量名有点歧义,这里是想表达 由元组组成的list哈. 之所以用dictionary是因为模拟的将字典转换成list. 将list进行排序,而根据lam ...

  9. layui实现点击按钮添加行(方法渲染创建的table)

    / jquery实现的搜索功能 $('#search_btn').on('click',function(){ var txt=$('#inputValue').val(); var value=$( ...

  10. maven下载、配置和安装

    Maven简介 #Apache Maven is a software project management and comprehension tool. Based on the concept ...