1. 什么是Android IPC

  • IPC:inter-process Commnication跨进程的通信,多进程之间的通信,不同的操作系统有不同的通信方式,Android继承自Linux,但其IPC并没有完全继承Linux,除了socket进程通信之外,其最具特色通信方式之一的是binder机制
  • 为什么需要进程通信:我们知道Android一般情况下一个应用是默认运行在一个进程中,但有可能一个应用中需要采用多进程模式来实现(比如获取多份内存空间),或者两个应用之间需要获取彼此之间的数据,还有AMS(系统服务)对每个应用中四大组件的管理,系统服务是运行在一个单独的进程中,这些统统需要IPC
  • Android在一个应用中开启多线程模式
    1. 为四大组件在Android Manifest中指定Android:process属性,进程名以 : 开头的进程属于当前应用的私有进程,其他应用的组件不可以和它在同一个进程中,进程名不以: 开头的属于全局进程,其他应用可以通过ShareUID方式跑在一个进程中,这意味着可以共享内存数据
    2. 多进程运行:我们知道Android为每一个进程独立分配了一个独立的虚拟机,所以在内存分配上是有不同的地址空间,所以运行在不同进程的四大组件,他们之间没办法共享数据,因此我们需要进程间的通信
    3. Android进程间通信方式包括:通过intent传递数据,共享文件和sharedPreference,基于binder的message和AIDL还有socket

2. IPC 基础概念

Serializable和Parcelable接口可以完成对象的序列化。
序列化是指将一个对象转化为二进制或者是某种格式的字节流,将其转换为易于保存或网络传输的格式的过程,反序列化则是将这些字节重建为一个对象的过程。
在Android中,intent和Binder在传输数据的时候就需要将对象实现parcelable或者serializable接口。

  • Serializable接口:

    1. Java提供的序列化接口,使用时只需要实现Serializable接口并声明一个serialVersionUID(用于反序列化)
    2. 使用方法
  • Parcelable接口:
    Android中Parcelable接口用法

  • 两者都可以实现序列化并可用于intent间的数据传递,Serializable使用简单,但是开销很大,Parcelable是Android中的序列化方式,使用起来麻烦一点,但是效率很高,是Android推荐的方式。Parcelable主要用在内存序列化上,如果要将对象序列化到存储设备或者通过网络传输也是可以的,但是会比较复杂,这两种情况建议使用Serializable。

  • Binder机制:为什么Android 要采用Binder作为IPC机制?
    1. 性能:Binder数据拷贝只需要一次,而管道、消息队列和socket都需要2次,共享内存不需要一次内存拷贝,从性能角度来看,binder性能仅次于共享内存。
    2. 稳定性:Binder基于C/S 架构 ,server端与client端相对独立,共享内存需要考虑访问临界资源的并发同步问题,binder结构的稳定性较好
    3. 安全性:Android为每个人应用程序分配了自己的UID,进程的UID是鉴别进程身份的重要标志,Android系统中对外只暴露Client端,Client端将任务发送给Server端,Server端会根据权限控制策略

      Android OS中的Zygote进程的IPC采用的是Socket(套接字)机制,Android中的Kill Process采用的signal(信号)机制等等。而Binder更多则用在system_server进程与上层App层的IPC交互。

Binder在Android系统中江湖地位非常之高。在Zygote孵化出system_server进程后,在system_server进程中出初始化支持整个Android framework的各种各样的Service,而这些Service从大的方向来划分,分为Java层Framework和Native Framework层(C++)的Service,几乎都是基于BInder IPC机制。

  1. Java framework:作为Server端继承(或间接继承)于Binder类,Client端继承(或间接继承)于BinderProxy类。例如ActivityManagerService(用于控制Activity、Service、进程等) 这个服务作为Server端,间接继承Binder类,而相应的ActivityManager作为Client端,间接继承于BinderProxy类。 当然还有PackageManagerService、WindowManagerService等等很多系统服务都是采用C/S架构;
  2. Native Framework层:这是C++层,作为Server端继承(或间接继承)于BBinder类,Client端继承(或间接继承)于BpBinder。例如MediaPlayService(用于多媒体相关)作为Server端,继承于BBinder类,而相应的MediaPlay作为Client端,间接继承于BpBinder类。

3. Android 中的binder

参考:
Binder系列—开篇
可能是讲解Binder机制最好的文章
 Android Bander设计与实现 - 设计篇
Android - Binder驱动

3.1 面向对象的binder IPC

  • Binder使用C/S 模式,一个进程作为server提供诸如视频解码,网络连接、查询等多种服务,多个进程作为client向server发起服务请求,获得所需要的服务。
  • Binder的独特之处在于Binder对象是一个可以跨进程实现的的对象,它的实体位于一个进程中,而它的引用则在其他client进程中,Binder驱动为面向对象的进程间通信提供底层支持

3.2 Binder通信框架

Binder框架定义了四个角色,Server,Client,ServiceManager,以及binder驱动,驱动运行在内核空间,其他三者运行在用户空间

  • Binder 驱动:binder驱动与硬件设备没有关系,但是它的工作方式与设备驱动程序是一样的,工作在内核态,提供open(),mmap(),ioctl等标准文件操作,用户可以通过/dev/binder来访问它,驱动负责进程之间binder通信的建立,传递,计数管理以及数据的传递交互等底层支持
  • ServiceManager:将Binder名字转换为client中对该binder的引用,使得client可以通过binder名字获得server中binder实体的引用。
  • Client和Server在Binder驱动和Service Manager提供的基础设施上,进行Client-Server之间的通信
  • Server创建了Binder实体,为其取一个字符形式,可读易记的名字,将这个Binder连同名字以数据包的形式通过Binder驱动发送给SMgr,通知SMgr注册一个名叫张三的Binder,它位于某个Server中。驱动为这个穿过进程边界的Binder创建位于内核中的实体节点以及SMgr对实体的引用,将名字及新建的引用打包传递给SMgr。SMgr收数据包后,从中取出名字和引用填入一张查找表中。
  • Server向SMgr注册了Binder实体及其名字后,Client就可以通过名字获得该Binder的引用

Android IPC的更多相关文章

  1. Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- ApiWrapper

    前面两片文章讲解了通过AIDL和Messenger两种方式实现Android IPC.而本文所讲的并不是第三种IPC方式,而是对前面两种方式进行封装,这样我们就不用直接把Aidl文件,java文件拷贝 ...

  2. Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger

    Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...

  3. Android IPC(inter-process Communitcation)

    Android IPC(inter-process Communitcation) http://www.cnblogs.com/imlucky/archive/2013/08/08/3246013. ...

  4. Android IPC机制(三)在Android Studio中使用AIDL实现跨进程方法调用

    在上一篇文章Android IPC机制(二)用Messenger进行进程间通信中我们介绍了使用Messenger来进行进程间通信的方法.可是我们能发现Messenger是以串行的方式来处理client ...

  5. android IPC通信(上)-sharedUserId&&Messenger

    看了一本书,上面有一章解说了IPC(Inter-Process Communication,进程间通信)通信.决定结合曾经的一篇博客android 两个应用之间的通信与调用和自己的理解来好好整理总结一 ...

  6. 【Android - IPC】之Binder机制简介

    参考资料: 1.<Android开发艺术探索>第二章2.3.3 Binder 2.[Android Binder设计与实现-设计篇] 3.[Android Binder机制介绍] 1. 什 ...

  7. android IPC及原理简介

    什么是Android操作系统,所谓的Android:是基于Linux内核的软件平台和操作系统,早期由Google开发,后由开放手机联盟Open Handset Alliance)开发.   Linux ...

  8. android ipc通信机制之二序列化接口和Binder

    IPC的一些基本概念,Serializable接口,Parcelable接口,以及Binder.此核心为最后的IBookManager.java类!!! Serializable接口,Parcelab ...

  9. AIDL实现Android IPC

    1.AIDL文本解释 在软件工程中,接口定义语言(IDL)已经成为通用术语,是用来描述软件组件接口的特定语言.在Android中,该IDL被称为Android接口定义语言(AIDL),它是纯文本文件, ...

随机推荐

  1. AngularJS注入依赖路由总结

    属性 描述 $dirty  表单有填写记录 $valid 字段内容是合法的 $invalid 字段内容是非法的 $pristine 表单没有填写记录 什么事依赖注入? 依赖注入是一种软件设计模式,在这 ...

  2. hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)

    Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  3. html的body内标签之label标签和fieldset标签

    1. <label> 标签为 input 元素定义标注(标记). label 元素不会向用户呈现任何特殊效果.不过,它为鼠标用户改进了可用性.如果您在 label 元素内点击文本,就会触发 ...

  4. 【题解】51nod 1685第K大区间2

    二分答案+++++++(。・ω・。) 感觉这个思路好像挺常用的:求第\(K\) 大 --> 二分第 \(K\) 大的值 --> 检验当前二分的值排名是第几.前提:排名与数值大小成单调性变化 ...

  5. [NOIP2012 TG D2T1]同余方程

    题目大意:求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 题解:即求a在mod b意义下的逆元,这里用扩展欧几里得来解决 C++ Code: #include<cstdio ...

  6. [CQOI2017]老C的方块 网络流

    ---题面--- 题解: 做这题做了好久,,,换了4种建图QAQ 首先我们观察弃疗的形状,可以发现有一个特点,那就是都以一个固定不变的特殊边为中心的,如果我们将特殊边两边的方块分别称为s块和t块, 那 ...

  7. Android 内核--Binder架构分析

    一.Binder架构 在Android中,Binder用于完成进程间通信(IPC),即把多个进程关联在一起.比如,普通应用程序可以调用音乐播放服务提供的播放.暂停.停止等功能.Binder工作在Lin ...

  8. BZOJ1059:[ZJOI2007]矩阵游戏——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1059 https://www.luogu.org/problemnew/show/P1129 小Q是 ...

  9. HDOJ.1789 Doing Homework again (贪心)

    Doing Homework again 点我挑战题目 题意分析 给出n组数据,每组数据中有每份作业的deadline和score,如果不能按期完成,则要扣相应score,求每组数据最少扣除的scor ...

  10. Kindle 电子书相关的工具软件【转】

    这里是与 Kindle 电子书相关的工具软件.它们可以帮助我们解决在日常使用电子书时所可能遇到的问题,比如 kindle 管理工具.kindle 转换工具.kindle电子书制作工具.kindle 推 ...