Min Cut (Destroy Trade Net)


Time Limit: 15 Seconds      Memory Limit: 32768 KB

Given an undirected graph, in which two vertexes can be connected by multiple edges, what is the min-cut of the graph? i.e. how many edges must be removed at least to partition the graph into two disconnected sub-graphes?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (2<=N<=500, 0<=M<=N*(N-1)/2) in one line, where N is the number of vertexes. Following are M lines, each line contains M integers A, B and C (0<=A,B<N, A<>B, C>0), meaning that there C edges connecting vertexes A and B.

Output

There is only one line for each test case, which is the min-cut of the graph. If the graph is disconnected, print 0.

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 3
0 1 1
1 2 1
2 3 1
8 14
0 1 1
0 2 1
0 3 1
1 2 1
1 3 1
2 3 1
4 5 1
4 6 1
4 7 1
5 6 1
5 7 1
6 7 1
4 0 1
7 3 1

Sample Output

2
1
2
/**
最大流 == 最小割
**/
#include <iostream>
#include <string.h>
#include <cmath>
#include <stdio.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = ;
const ll maxw = ;
const ll inf = 1e17;
ll g[N][N], w[N];
int a[N], v[N], na[N];
ll mincut(int n) {
int i, j, pv, zj;
ll best = inf;
for(i = ; i < n; i ++) {
v[i] = i;
}
while(n > ) {
for(a[v[]] = , i = ; i < n; i ++) {
a[v[i]] = ;
na[i - ] = i;
w[i] = g[v[]][v[i]];
}
for(pv = v[], i = ; i < n; i ++) {
for(zj = -, j = ; j < n; j ++)
if(!a[v[j]] && (zj < || w[j] > w[zj])) {
zj = j;
}
a[v[zj]] = ;
if(i == n - ) {
if(best > w[zj]) {
best = w[zj];
}
for(i = ; i < n; i ++) {
g[v[i]][pv] = g[pv][v[i]] += g[v[zj]][v[i]];
}
v[zj] = v[--n];
break;
}
pv = v[zj];
for(j = ; j < n; j ++) if(!a[v[j]]) {
w[j] += g[v[zj]][v[j]];
}
}
}
return best;
}
int main()
{
int n, m, s;
while(~scanf("%d %d", &n, &m))
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
g[i][j] = ;
}
}
int u, v, w;
for(int i = ; i < m; i++)
{
scanf("%d %d %d", &u, &v, &w);
// u--;
// v--;
g[u][v] += w;
g[v][u] += w;
}
printf("%lld\n", mincut(n));
}
return ;
}

ZOJ-2753的更多相关文章

  1. ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)

    题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...

  2. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  3. ZOJ 3686 A Simple Tree Problem

    A Simple Tree Problem Time Limit: 3 Seconds      Memory Limit: 65536 KB Given a rooted tree, each no ...

  4. ZOJ Problem Set - 1394 Polar Explorer

    这道题目还是简单的,但是自己WA了好几次,总结下: 1.对输入的总结,加上上次ZOJ Problem Set - 1334 Basically Speaking ac代码及总结这道题目的总结 题目要求 ...

  5. ZOJ Problem Set - 1392 The Hardest Problem Ever

    放了一个长长的暑假,可能是这辈子最后一个这么长的暑假了吧,呵呵...今天来实验室了,先找了zoj上面简单的题目练练手直接贴代码了,不解释,就是一道简单的密文转换问题: #include <std ...

  6. ZOJ Problem Set - 1049 I Think I Need a Houseboat

    这道题目说白了是一道平面几何的数学问题,重在理解题目的意思: 题目说,弗雷德想买地盖房养老,但是土地每年会被密西西比河淹掉一部分,而且经调查是以半圆形的方式淹没的,每年淹没50平方英里,以初始水岸线为 ...

  7. ZOJ Problem Set - 1006 Do the Untwist

    今天在ZOJ上做了道很简单的题目是关于加密解密问题的,此题的关键点就在于求余的逆运算: 比如假设都是正整数 A=(B-C)%D 则 B - C = D*n + A 其中 A < D 移项 B = ...

  8. ZOJ Problem Set - 1001 A + B Problem

    ZOJ ACM题集,编译环境VC6.0 #include <stdio.h> int main() { int a,b; while(scanf("%d%d",& ...

  9. zoj 1788 Quad Trees

    zoj 1788 先输入初始化MAP ,然后要根据MAP 建立一个四分树,自下而上建立,先建立完整的一棵树,然后根据四个相邻的格 值相同则进行合并,(这又是递归的伟大),逐次向上递归 四分树建立完后, ...

  10. ZOJ 1958. Friends

    题目链接: ZOJ 1958. Friends 题目简介: (1)题目中的集合由 A-Z 的大写字母组成,例如 "{ABC}" 的字符串表示 A,B,C 组成的集合. (2)用运算 ...

随机推荐

  1. 有序数列第K小

    有序数列第K小 题目描述 给出两个长度分别为\(n,m\)的单调非递减数列,求出它们合并后的第\(k\)小值. 输入输出格式 输入格式: 第一行三个数,\(n,m,k\)如题意所述: 第二行\(n\) ...

  2. 卡特兰数(Catalan Number) 学习笔记

    一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...

  3. React中的高阶组件,无状态组件,PureComponent

    1. 高阶组件 React中的高阶组件是一个函数,不是一个组件. 函数的入参有一个React组件和一些参数,返回值是一个包装后的React组件.相当于将输入的React组件进行了一些增强.React的 ...

  4. [学习笔记]Segment Tree Beats!九老师线段树

    对于这样一类问题: 区间取min,区间求和. N<=100000 要求O(nlogn)级别的算法 直观体会一下,区间取min,还要维护区间和 增加的长度很不好求.... 然鹅, 从前有一个来自杭 ...

  5. IE的CSS渲染跟其它浏览器有什么不同

    由于IE系浏览器对标准的支持不够好,导致Web开发中经常需要去处理浏览器兼容性问题,特别有些莫名其妙的问题很让人头疼,今天要说这个问题就是这样的,先从插入CSS的三种方法说起: 外部样式(Extern ...

  6. [codeforces/edu2]总结(F)

    链接:http://codeforces.com/contest/600 A题: 字符串处理. B题: sort+upper_bound C题: 统计一下每种字符的个数,然后贪心. (1) 如果没有奇 ...

  7. tools:context=".MainActivity的作用

    <TextView android:layout_width="wrap_content" android:layout_height="wrap_content& ...

  8. PHP日期时间操作

    一.设置时区 date_default_timezone_set('PRC'); 二.获取当前时间的 Unix 时间戳(格林威治时间 1970 年 1 月 1 日 00:00:00到当前时间的秒数)和 ...

  9. [uva11997]k个最小和

    一个k*k的矩阵,每行选取一个数相加则得到一个和,求最小的前k个和. k<=750 已知前m行最小的前k个和d[1]…d[k],则前m+1行最小的前k个和都必定是d[i](i<=k)+a[ ...

  10. SQL语句中的单引号处理以及模糊查询

    为了防止程序SQL语句错误以及SQL注入,单引号必须经过处理.有2种办法: 1.使用参数,比如SELECT * FROM yourTable WHERE name = @name; 在C#中使用Sql ...