https://www.lydsy.com/JudgeOnline/problem.php?id=1016

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

无外乎两种:K算法和P算法(当然还有第三种但是我不会(滑稽)

P算法没法解于是用K算法。

发现K算法的正确性后其实我们需要做的工作就是从K算法找到一些边,可以用另一些边权一样的边替换并且是一棵生成树即可。

于是我们枚举即可。

(当然你会有两个问题:1.为什么边权一样即可替换,2.前面的边的操作对后面边是否有影响?)

(所以暴力选手不过脑子的话就很轻松的敲完代码走人了(比如我))

(实际为两个定理,分别为:

1.不同的最小生成树中,每种权值的边出现的个数是确定的。

2.不同的生成树中,某一种权值的边连接完成后,形成的联通块状态是一样的 。

百度一下。)

https://blog.csdn.net/jarily/article/details/8902402可能这个解释靠谱些?)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<vector>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int p=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u,v,w;
}e[M];
struct range{
int l,r;
}a[M];
int fa[N],t[M],n,m,k,sum;
inline bool cmp(node a,node b){
return a.w<b.w;
}
int find(int x){
if(fa[x]==x)return x;
return find(fa[x]);
}
inline void unionn(int x,int y){
fa[x]=y;
}
inline void destory(int x,int y){
fa[x]=x;fa[y]=y;
}
void dfs(int l,int r,int d,int w){
if(l>r){
if(d==t[w])sum=(sum+)%p;
return;
}
if(r-l++d<t[w])return;
int u=find(e[l].u),v=find(e[l].v);
if(u!=v&&d<t[w]){
unionn(u,v);
dfs(l+,r,d+,w);
destory(u,v);
}
dfs(l+,r,d,w);
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
e[i].u=read(),e[i].v=read(),e[i].w=read();
}
sort(e+,e+m+,cmp);
for(int i=;i<=n;i++)fa[i]=i;
int cnt=;
for(int i=;i<=m;i++){
if(e[i].w!=e[i-].w){
a[++k].l=i;a[k-].r=i-;
}
int u=e[i].u,v=e[i].v;
u=find(u),v=find(v);
if(u!=v)t[k]++,cnt++,unionn(u,v);
}
a[k].r=m;
if(cnt!=n-){
puts("");return ;
}
int ans=;
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=k;i++){
if(!t[i])continue;
sum=;
dfs(a[i].l,a[i].r,,i);
ans=(ll)ans*sum%p;
for(int j=a[i].l;j<=a[i].r;j++){
int u=e[j].u,v=e[j].v;
u=find(u),v=find(v);
if(u!=v)unionn(u,v);
}
}
printf("%d\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1016:[JSOI2008]最小生成树计数——题解的更多相关文章

  1. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  2. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  3. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  5. 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数

    题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...

  6. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

  7. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  8. 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)

    传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...

随机推荐

  1. HashMap在并发场景下踩过的坑

    本文来自网易云社区 作者:张伟 关于HashMap在并发场景下的问题有很多人,很多公司遇到过!也很多人总结过,我们很多时候都认为这样都坑距离自己很远,自己一定不会掉入这样都坑.可是我们随时都有就遇到了 ...

  2. ThinkDev.Data更新日志

    2013-09-29 10:001.重构Where.And.Or.Having.JoinTable代码,新增条件组合查询QueryGroup2.1.1.2.0 2013-09-04 09:001.修复 ...

  3. 爬虫初体验:Python+Requests+BeautifulSoup抓取广播剧

    可以看到一个DIV下放一个广播剧的信息,包括名称和地址,第一步我们先收集所有广播剧的收听地址: # 用requests的get方法访问novel_list_resp = requests.get(&q ...

  4. JMeter常用元器件

    测试计划, 是整个工程的根节点, 可以取别名, 并添加注释, 里面的设置是全局变量: 线程组, 是一组线程的集合, 可以取别名, 并添加注释, 里面的设置只对本线程组有效: HTTP请求, 也就是取样 ...

  5. Web自动化selenium技术快速实现爬虫

    selenium是大家众所周知的web自动化测试框架,主要用来完成web网站项目的自动化测试,但其实如果要实现一个web爬虫,去某些网站爬取数据,其实用selenium来实现也很方便. 比如,我们现在 ...

  6. Python全栈 项目(HTTPServer、PiP使用)

    pip是Python官方推荐的包管理工具   属于python的一部分            pip的使用    pip的安装             sudo apt-get install pyt ...

  7. matlab画图:设置y轴位置,使y轴在x轴的中间

    sigmoid函数图像 x=-10:0.1:10;  y=sigmf(x,[1 0]);  plot(x,y) 画出的图像如下所示: 怎么将Y轴放在中间呢,而不是在左边? 即如何得到这种效果呢? 方法 ...

  8. 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测

    神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...

  9. Matlab结构体定义

    定义一个Matlab结构体的代码,以飞行器为例: classdef flightpro properties pos = [ ]; RGB = [ ]; rate; type; end end

  10. Simple layout

    body { padding: 0; margin: 0; overflow: hidden; }   div { display: block; position: relative; }   .c ...