题意

PDF

分析

可以二分答案,检验就用半平面交,如果平面非空则合法。

时间复杂度\(O(T n \log^2 n)\)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
    rg T data=0;
    rg int w=1;
    rg char ch=getchar();
    while(!isdigit(ch))
    {
        if(ch=='-')
            w=-1;
        ch=getchar();
    }
    while(isdigit(ch))
    {
        data=data*10+ch-'0';
        ch=getchar();
    }
    return data*w;
}
template<class T>T read(T&x)
{
    return x=read<T>();
}
using namespace std;
typedef long long ll;

struct Point
{
    double x,y;

    Point(double x=0,double y=0)
    :x(x),y(y){}
};
typedef Point Vector;

Vector operator+(co Vector&A,co Vector&B)
{
    return Vector(A.x+B.x,A.y+B.y);
}

Vector operator-(co Vector&A,co Vector&B)
{
    return Vector(A.x-B.x,A.y-B.y);
}

Vector operator*(co Vector&A,double p)
{
    return Vector(A.x*p,A.y*p);
}

Vector operator/(co Vector&A,double p)
{
    return Vector(A.x/p,A.y/p);
}

double Dot(co Vector&A,co Vector&B)
{
    return A.x*B.x+A.y*B.y;
}

double Cross(co Vector&A,co Vector&B)
{
    return A.x*B.y-A.y*B.x;
}

double Length(co Vector&A)
{
    return sqrt(Dot(A,A));
}

Vector Normal(co Vector&A)
{
    double L=Length(A);
    return Vector(-A.y/L,A.x/L);
}

double PolygonArea(vector<Point> p)
{
    int n=p.size();
    double area=0;
    for(int i=1;i<n-1;++i)
        area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2;
}

struct Line
{
    Point P;
    Vector v;

    Line(Point P=0,Vector v=0)
    :P(P),v(v){}

    double angle()co
    {
        return atan2(v.y,v.x);
    }

    bool operator<(co Line&rhs)co
    {
        return angle()<rhs.angle();
    }
};

bool OnLeft(co Line&L,co Point&p)
{
    return Cross(L.v,p-L.P)>0;
}

Point LineLineIntersection(co Line&a,co Line&b)
{
    Vector u=a.P-b.P;
    double t=Cross(b.v,u)/Cross(a.v,b.v);
    return a.P+a.v*t;
}

co double INF=1e8;
co double eps=1e-6;

vector<Point>HalfplaneIntersection(vector<Line>L)
{
    int n=L.size();
    sort(L.begin(),L.end());

    int first,last;
    vector<Point>p(n);
    vector<Line>q(n);
    vector<Point>ans;

    q[first=last=0]=L[0];
    for(int i=1;i<n;++i)
    {
        while(first<last&&!OnLeft(L[i],p[last-1]))
            --last;
        while(first<last&&!OnLeft(L[i],p[first]))
            ++first;
        q[++last]=L[i];
        if(fabs(Cross(q[last].v,q[last-1].v))<eps)
        {
            --last;
            if(OnLeft(q[last],L[i].P))
                q[last]=L[i];
        }
        if(first<last)
            p[last-1]=LineLineIntersection(q[last-1],q[last]);
    }
    while(first<last&&!OnLeft(q[first],p[last-1]))
        --last;
    if(last-first<=1)
        return ans;
    p[last]=LineLineIntersection(q[last],q[first]);

    for(int i=first;i<=last;++i)
        ans.push_back(p[i]);
    return ans;
}

int main()
{
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    int n;
    while(read(n))
    {
        vector<Vector>p,v,normal;

        for(int i=0;i<n;++i)
            p.push_back(Point(read<int>(),read<int>()));
        if(PolygonArea(p)<0)
            reverse(p.begin(),p.end());

        for(int i=0;i<n;++i)
        {
            v.push_back(p[(i+1)%n]-p[i]);
            normal.push_back(Normal(v[i]));
        }

        double left=0,right=2e4;
        while(right-left>eps)
        {
            vector<Line>L;
            double mid=(left+right)/2;
            for(int i=0;i<n;++i)
                L.push_back(Line(p[i]+normal[i]*mid,v[i]));
            vector<Point>poly=HalfplaneIntersection(L);
            if(poly.empty())
                right=mid;
            else
                left=mid;
        }
        printf("%.6lf\n",left);
    }
    return 0;
}

LA3890 Most Distant Point from the Sea的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  3. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  4. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  5. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  6. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  7. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

随机推荐

  1. jQuery多功能日历插件 带事件记录功能

    在线演示 本地下载

  2. HTML5 SVG世界地图

    在线演示 本地下载

  3. Mahout 分类算法

    实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu ...

  4. 判断当前html是否在微信中打开

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  5. 判断iframe页面是否是顶层页面

    if (self!=top) {  window.parent.location.reload();}

  6. EF Code-First 学习之旅 多对多的关系

    public class Student { public Student() { this.Courses = new HashSet<Course>(); } public int S ...

  7. JAVA实现IP地址解析

    转载至:http://blog.csdn.net/dragontang/article/details/4151660 http://www.iteye.com/topic/340548#

  8. 第三篇:Spark SQL Catalyst源码分析之Analyzer

    /** Spark SQL源码分析系列文章*/ 前面几篇文章讲解了Spark SQL的核心执行流程和Spark SQL的Catalyst框架的Sql Parser是怎样接受用户输入sql,经过解析生成 ...

  9. perl非root用户安装模块

    install perl Module 1. search module's package on [Google](https://www.google.com) or [CPAN Search S ...

  10. POJ3275:Ranking the Cows(Bitset加速floyd求闭包传递)

    Each of Farmer John's N cows (1 ≤ N ≤ 1,000) produces milk at a different positive rate, and FJ woul ...