【题意】给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1 ≤ a ≤ b ≤ 10^18

【算法】数位DP

【题解】

感觉这种方法很暴力啊。

枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和。

每次sum+i和(val*10+i)%MOD转移。

sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差。

要什么方法才能跑1.3s啊,%%%。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
ll f[maxn][][],a[maxn],b[maxn],c[maxn],n,MOD;
ll dfs(int pos,int sum,int val,int limit){
if(sum>MOD)return ;
if(pos==-){if(sum==MOD&&val==)return ;else return ;}
if(!limit&&~f[pos][MOD-sum][val])return f[pos][MOD-sum][val]; int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
ans+=dfs(pos-,sum+i,(val*+i)%MOD,limit&&i==up);
}
if(!limit)f[pos][MOD-sum][val]=ans;
return ans;
}
int main(){
ll A,B,cntb=,cntc=;
scanf("%lld%lld",&A,&B);
A--;
while(A){
b[cntb++]=A%;
A/=;
}
while(B){
c[cntc++]=B%;
B/=;
}
ll ans=;
for(int i=;i<=;i++){//不能模0啊!!!模0也是除0啊!!!
memset(f,-,sizeof(f));
MOD=i;
n=cntb;
for(int j=;j<n;j++)a[j]=b[j];
ans-=dfs(n-,,,);
n=cntc;
for(int j=;j<n;j++)a[j]=c[j];
ans+=dfs(n-,,,);
}
printf("%lld",ans);
return ;
}

【BZOJ】1799: [Ahoi2009]self 同类分布的更多相关文章

  1. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  2. BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP

    Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...

  3. bzoj 1799: [Ahoi2009]self 类似的分布 解读

    [原标题] 1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB Submit: 554  Solved: 194 [id ...

  4. [Ahoi2009]self 同类分布

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 2357  Solved: 1079[Submit][ ...

  5. bzoj1799: [Ahoi2009]self 同类分布

    数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...

  6. [BZOJ1799][Ahoi2009]self 同类分布(数位dp)

    题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...

  7. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  8. 【数位dp】bzoj1799: [Ahoi2009]self 同类分布

    各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...

  9. 【AHOI2009】同类分布 题解(数位DP)

    题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...

随机推荐

  1. python统计日志小脚本

    日志格式如下: [ 2016-06-28T00:10:33-03:00 ] xxx.xx.xx.xxx /api/index/xxx/ ERR: code:400 message: params: c ...

  2. jmeter添加自定义扩展函数之图片base64编码

    打开eclipse,新建maven工程,在pom中引入jmeter核心jar包: <!-- https://mvnrepository.com/artifact/org.apache.jmete ...

  3. 【个人笔记】关于C++小数的处理

    无论是C-Style还是C++-Style的输出,小数都会四舍五入.如果想要截断两种比较好的方法.第一种:利用sscanf输出成字符串,再人为地putchar().第二种:已知钦定保留6位小数,那么可 ...

  4. 免费天气预报API接口

    一.中国气象局(http://www.weather.com.cn) 1.实时接口 http://mobile.weather.com.cn/data/sk/101010100.html http:/ ...

  5. Java并发基础--多线程基础

    一.多线程基础知识 1.进程和线程 进程:是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程:进程也是程序的一次执行过程,是系统运行程序的基本单位:系统运行 ...

  6. 九度OJ--1165(C++)

    #include <iostream>#include <string>#include <vector> using namespace std; int mai ...

  7. LeetCode 410——分割数组的最大值

    1. 题目 2. 解答 此题目为 今日头条 2018 AI Camp 5 月 26 日在线笔试编程题第二道--最小分割分数. class Solution { public: // 若分割数组的最大值 ...

  8. HDU 5794 A Simple Chess Lucas定理+dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...

  9. lintcode-74-第一个错误的代码版本

    74-第一个错误的代码版本 代码库的版本号是从 1 到 n 的整数.某一天,有人提交了错误版本的代码,因此造成自身及之后版本的代码在单元测试中均出错.请找出第一个错误的版本号. 你可以通过 isBad ...

  10. 【SSH】——hql的使用方式及实现原理

    [含义] hql,即Hibernate Query  Language.它与我们熟知的sql很类似,它最大的特点就是对查询进行了面向对象的封装,下面会在具体例子中说明. sql查询的是数据库中的表或字 ...