【BZOJ】1799: [Ahoi2009]self 同类分布
【题意】给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。1 ≤ a ≤ b ≤ 10^18
【算法】数位DP
【题解】
感觉这种方法很暴力啊。
枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和。
每次sum+i和(val*10+i)%MOD转移。
sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差。
要什么方法才能跑1.3s啊,%%%。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=;
ll f[maxn][][],a[maxn],b[maxn],c[maxn],n,MOD;
ll dfs(int pos,int sum,int val,int limit){
if(sum>MOD)return ;
if(pos==-){if(sum==MOD&&val==)return ;else return ;}
if(!limit&&~f[pos][MOD-sum][val])return f[pos][MOD-sum][val]; int up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++){
ans+=dfs(pos-,sum+i,(val*+i)%MOD,limit&&i==up);
}
if(!limit)f[pos][MOD-sum][val]=ans;
return ans;
}
int main(){
ll A,B,cntb=,cntc=;
scanf("%lld%lld",&A,&B);
A--;
while(A){
b[cntb++]=A%;
A/=;
}
while(B){
c[cntc++]=B%;
B/=;
}
ll ans=;
for(int i=;i<=;i++){//不能模0啊!!!模0也是除0啊!!!
memset(f,-,sizeof(f));
MOD=i;
n=cntb;
for(int j=;j<n;j++)a[j]=b[j];
ans-=dfs(n-,,,);
n=cntc;
for(int j=;j<n;j++)a[j]=c[j];
ans+=dfs(n-,,,);
}
printf("%lld",ans);
return ;
}
【BZOJ】1799: [Ahoi2009]self 同类分布的更多相关文章
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- BZOJ 1799 - [AHOI2009]self 同类分布 - 枚举 数位DP
Description 找出$[L, R]$ 区间内有多少数, 各位数字和 能整除原数 Solution 枚举每个可能的数字和, 进行数位DP即可 , 水爆 Code #include<cstd ...
- bzoj 1799: [Ahoi2009]self 类似的分布 解读
[原标题] 1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB Submit: 554 Solved: 194 [id ...
- [Ahoi2009]self 同类分布
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 2357 Solved: 1079[Submit][ ...
- bzoj1799: [Ahoi2009]self 同类分布
数位dp 先从1到162枚举各位数之和 s[i][j][k][l]表示i位数,第一位小于等于j,当前各位数字和为k,当前取模余数为l的方案数 然后脑补一下转移就行了 详见代码 #include < ...
- [BZOJ1799][Ahoi2009]self 同类分布(数位dp)
题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输 ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- 【数位dp】bzoj1799: [Ahoi2009]self 同类分布
各种奇怪姿势的数位dp Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Sample Input 10 19 Sample Output 3 HINT [约束条 ...
- 【AHOI2009】同类分布 题解(数位DP)
题目大意:求$[l,r]$中各位数之和能被该数整除的数的个数.$0\leq l\leq r\leq 10^{18}$. ------------------------ 显然数位DP. 搜索时记录$p ...
随机推荐
- qt 编译unresolved external symbol的错误解决
题外问题:.rc文件报错,里面引用的.h文件打不开. 方法:rc文件移除,然后重新添加就可以: unresolved external symbol的原因: 1.没有添加编译生成的moc文件,添加对应 ...
- Hadoop入门案列,初学者Coder
1.WordCount Job类: package com.simope.mr.wcFor; import org.apache.hadoop.conf.Configuration; import o ...
- LR创建数据源读取excel
1 在window上创建数据源 2 创建对应的数据文件 excel 注:注意格式和底部的表单名称 3 Vegen中创建参数 注意:机器数据源选择windows的ODBC数据源 SQL查的是(she ...
- Selenium Grid 环境搭建 碰到的unable to access server
1. Slenenium Grid的环境部署, 前提条件: JDK,JRE都已经安装, selenium的standalone jar包放在磁盘 执行如下命令,报错: 2. 在cmd窗口里切换到jar ...
- 5.爬虫 requests库讲解 高级用法
0.文件上传 import requests files = {'file': open('favicon.ico', 'rb')} response = requests.post("ht ...
- 扩展欧几里得 求ax+by == n的非负整数解个数
求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll ...
- redis-Windows下安装与操作
Redis windows下安装 1.安装 (1)windows把redisbin_x32安装包放在电脑任意的盘里 (2)通过cmd找到对应目录: D\redisbin_x32 (3)开始安装 D\ ...
- mysqldump: Got error: 1135: Can't create a new thread (errno 11); if you are not out of available memory, you can consult the manual for a possible OS-dependent bug when trying to connect 解决办法
在进行数据库备份的时候发现服务器报 mysqldump: Got error: 1135: Can't create a new thread (errno 11); if you are not o ...
- Python创建目录文件夹
Python对文件的操作还算是方便的,只需要包含os模块进来,使用相关函数即可实现目录的创建. 主要涉及到三个函数 1.os.path.exists(path) 判断一个目录是否存在 2.os.mak ...
- Log4Net讲解
声明:本文内容主要译自Nauman Leghari的Using log4net,亦加入了个人的一点心得(节3.1.4). 1 简介 1.1 Log4net的优点: ...