DZY Loves Math II
简要题面
对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数:
- \(p_1\le p_2\le\cdots\le p_k\)
- \(p_1 + p_2 + \cdots + p_k = n\)
- \(\operatorname{lcm}(p_1, p_2,\cdots, p_k) = S\)
现在有一个固定 \(S\) 和多组询问 \(n\),求答案对 \(10^9+7\) 取模后的结果
题解
显然第三条就是 \(p_1p_2\cdots p_k\) 去重后乘积 \(= S\)
所以 \(S\) 如果有平方因子,那么所有询问都输出 -1 .
我们考虑把相同的 \(p_i\) 合并,则条件变成
\]
\(c_i\ge 1\) 只需要用 \(n\) 减即可变成 \(c_i\ge 0\) .
我们发现 \(n\) 挺大,\(S\) 挺小, \(p_i\) 又还是 \(S\) 的约数,于是考虑把 \(c_i\) 对 \(\dfrac S{p_i}\) 取模
如果一个 \(c_i\) 到达了 \(\dfrac S{p_i}\),那么就有 \(\sum\) 里面那玩意 \(=S\)
于是乎令 \(c_i = a_iS+b_i\)(\(b_i< S\))则可以拆成俩半
- \(a_iS\):我们称为整块
- \(b_i\):我们称为散块
整块有个 \(S\),可以提出来然后隔板法
散块分两类贡献
- 散块自身:因为散块非常小,跑多重背包即可
- 散块和散块合成整块:这个是要斥掉的,考虑对于 \(dp_m\),那么减去有整块的情况 \(dp_{m-S}\),完美解决 .
终
没了 .
reference: https://www.cnblogs.com/hzoi-DeepinC/p/11131047.html
DZY Loves Math II的更多相关文章
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错.... ... 不难发现这个题实际上是一个完全背包 问题在于n太大了,相应的有质数的数量不会超过7个 假设要求sigema(1~plen)i pi*ci=n 的方 ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
- DZY Loves Math 系列详细题解
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...
随机推荐
- npm 是什么?
npm 是什么? 本文写于 2020 年 6 月 16 日 最近帮几个同学装开发环境,发现他们会各种"卡死"在 npm 安装一些包的过程中. 他们会非常纠结这个命令我明明敲的和网上 ...
- 5┃音视频直播系统之 WebRTC 中的协议UDP、TCP、RTP、RTCP详解
一.UDP/TCP 如果让你自己开发一套实时互动直播系统,在选择网络传输协议时,你会选择使用UDP协议还是TCP协议 假如使用 TCP 会怎样呢?在极端网络情况下,TCP 为了传输的可靠性,将会进行反 ...
- CAD图与互联网地图网页端相互叠加显示技术分析和实现
需求分析 之前相关的博文中介绍了如果在Web网页端展示CAD图形(唯杰地图云端图纸管理平台 https://vjmap.com/app/cloud),当一些CAD图纸有实际地理坐标位置时,如地形图等, ...
- 学习Linux须知1.2之Linux命令的实战
(一)学习Linux 的准备工作 1.在线学习linux 学习网站推荐:Linux 基础入门_Linux - 蓝桥云课 (lanqiao.cn) 2.连接远程服务器学习[下文的案例就是使用xshell ...
- Elasticsearch(es)介绍与安装
### RabbitMQ从入门到集群架构: https://zhuanlan.zhihu.com/p/375157411 可靠性高 ### Kafka从入门到精通: https://zhuanlan. ...
- python3在使用类基础时,遇到错误TypeError: module.**init**() takes at most 2 arguments (3 given)
python3在使用类基础时,遇到错误TypeError: module.init() takes at most 2 arguments (3 given) 1.原因:直接导入的py文件,而没有导入 ...
- SmartIDE v0.1.18 已经发布 - 助力阿里国产IDE OpenSumi 插件安装提速10倍、Dapr和Jupyter支持、CLI k8s支持
SmartIDE v0.1.18 (cli build 3538) 已经发布,在过去的Sprint 18中,我们集中精力推进对 k8s 远程工作区 的支持,同时继续扩展SmartIDE对不同技术栈的支 ...
- SQL中如何修改数据库名、表名、列名?
文章目录 1.SQL中如何修改数据库的名字? 2.SQL中如何修改表的名字? 3.SQL中如何修改列的名字? 4.SQL中如何修改列的数据类型?(未完成,待续) 1.SQL中如何修改数据库名? 语法 ...
- SQL Server 2017 各版本之间的差异
SQL Server 2017的亮点 您选择的语言和平台 使用您选择的语言在本地和云中(现在在 Windows.Linux 和 Docker 容器上)构建现代应用程序. 行业领先的性能 充分利用任务关 ...
- CabloyJS的微信API对接模块:当前支持微信公众号和微信小程序
Cabloy-微信是什么 Cabloy-微信是基于CabloyJS全栈业务开发框架开发的微信接口模块,当前整合了微信公众号和微信小程序的接口,达到开箱即用的使用效果.在Cabloy-微信的基础上,可以 ...