luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)
luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)
题外话:
我可能是傻逼,
但不管我是不是傻逼,
我永远单挑出题人。
题解时间
看数据范围可以确定状压dp。
$ dp[s] $ 表示s集合去代替前几个数的话现有部分的最小结果。
将数组转化成数字之间的带权图,预处理集合和点之间的单向边数量就能解决。
对于一对相邻的转化完之后数 $ a,b $ ,贡献为
ka+kb(a>b)
\]
由此状压dp得出解。
时间复杂度实际上比 $ O( m 2^{m} ) $ 低的多可以过,
但这样由于空间限制只有70pts:
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=21,S=1<<21;
int n,m,c,ful;
int lb[S],cb[S];
int a[100011];
int mg[N][N],mp[S][N],mn[N][S];
int dp[S];
int main()
{
read(n),read(m),read(c),ful=1<<m;
for(int i=1;i<ful;i++) lb[i]=(i&1)?0:lb[i>>1]+1,cb[i]=cb[i>>1]+(i&1);
for(int i=1;i<=n;i++) read(a[i]),a[i]--;
for(int i=2;i<=n;i++) mg[a[i-1]][a[i]]++;
for(int i=0;i<m;i++)for(int s=1;s<ful;s++)
{
mp[s][i]=mp[s^(s&-s)][i]+mg[lb[s]][i];
mn[i][s]=mn[i][s^(s&-s)]+mg[i][lb[s]];
}
memset(dp,0x3f,sizeof(dp)),dp[0]=0;
for(int s=1,t=s,i,ss,su;s<ful;s++,t=s)
{
while(t)
{
i=lb[t],t^=(t&-t),ss=s^(1<<i),su=(ful-1)^s;
dp[s]=min(dp[s],dp[ss]+cb[s]*(mp[ss][i]+c*mn[i][ss]-mn[i][su]+c*mp[su][i]));
}
}
printf("%d\n",dp[ful-1]);
return 0;
}
}
int main(){return RKK::main();}
稍微(确信)改造一下,让上面预处理出来的连边值随着dp不断更新就能解决空间问题。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lint;
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=23,S=1<<23;
int n,m,c,ful;
int lb[S],cb[S];
int a[100011];
int mn[N][N],mp[N][N],lst[N][N],nw[N];
int dp[S];
int main()
{
read(n),read(m),read(c),ful=1<<m;
for(int i=1;i<ful;i++) lb[i]=(i&1)?0:lb[i>>1]+1,cb[i]=cb[i>>1]+(i&1);
for(int i=1;i<=n;i++) read(a[i]),a[i]--;
for(int i=2;i<=n;i++)if(a[i]!=a[i-1])
mn[a[i-1]][a[i]]+=-1,mn[a[i]][a[i-1]]+=c,
mp[a[i]][a[i-1]]+=1,mp[a[i-1]][a[i]]+=c;
for(int i=0;i<m;i++)
{
for(int j=0;j<m;j++) lst[i][j]=mn[i][j]-mp[i][j],nw[i]+=mn[i][j];
for(int j=1;j<m;j++) lst[i][j]+=lst[i][j-1];
}
memset(dp,0x3f,sizeof(dp)),dp[0]=0;
for(int s=0,t,i;s<ful-1;s++)
{
if(s)for(i=0;i<m;i++) nw[i]+=mp[i][lb[s]]-mn[i][lb[s]];
if(lb[s])for(i=0;i<m;i++) nw[i]+=lst[i][lb[s]-1];
t=(ful-1)^s;while(t)
{
i=lb[t],t^=t&-t;
dp[s|(1<<i)]=min(dp[s|(1<<i)],dp[s]+nw[i]*cb[s|(1<<i)]);
}
}
printf("%d\n",dp[ful-1]);
return 0;
}
}
int main(){return RKK::main();}
luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)的更多相关文章
- 题解 P6622 [省选联考 2020 A/B 卷] 信号传递
洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...
- luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分)
luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分) Luogu 题外话1: LN四个人切D1T2却只有三个人切D1T1 很神必 我是傻逼. 题外话2: 1e6的数据直接i ...
- [省选联考 2020 A/B 卷] 冰火战士
一.题目 点此看题 二.解法 其实这道题也不是特别难吧 \(......\) 但树状数组上二分是我第一次见. 我们把冰人和火人都按温度排序,那么考虑一个分界线 \(x\) ,问题就是求冰数组 \(x\ ...
- [省选联考 2020 A 卷] 组合数问题
题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...
- luoguP6623 [省选联考 2020 A 卷] 树(trie树)
luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...
- luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)
luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...
- luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)
luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...
- [省选联考 2021 A/B 卷] 卡牌游戏
垃圾福建垫底选手来看看这题. 大家怎么都写带 \(log\) 的. 我来说一个线性做法好了. 那么我们考虑枚举 \(k\) 作为翻转完的最小值. 那么构造出一个满足条件的操作,我们在 \(a_i\) ...
- 洛谷P6623——[省选联考 2020 A 卷] 树
传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...
随机推荐
- Solution -「多校联训」神
\(\mathcal{Description}\) Link. 给定 \(n\) 阶排列 \(a\),\(q\) 次询问,每次给出 \(1\le l_1\le r_1<l_2\le r_ ...
- 我来教你如何将cpu使用率up起来(shell脚本[含注释])
这个脚本是为了逃过一些资源检测的,当一些机器当前使用率偏低,会被客户要求收回,那咋办呢?使用下面的脚本,就可以留住你的机器了 假设要求cpu使用率不能低于35% 使用方法:bash up_up_up. ...
- ClickHouse在大数据领域应用实践
一.序言 面向大数据量查询数据库,优点是在较大数据量(千万级)的前提下具有较好的查询性能. 1.应用场景 ClickHouse应用于OLAP(在线分析处理)领域,具体来说满足如下特点使用此技术比较合适 ...
- [题解]RQNOJ PID86 智捅马蜂窝
链接:http://www.rqnoj.cn/problem/86 思路:单源点最短路 建图:首先根据父子关系连双向边,边权是距离/速度:再根据跳跃关系连单向边,边权是自由落体的时间(注意自由下落是一 ...
- 华为HCIP实验--OSPF单区域
场景:你是公司的网络管理员.现在公司的网络中有三台ARG3路由器,通过以太网实现相互的连通.在以太网这样的广播式多路访问网络上,可能存在安全隐患,所有你选择采用OSPF区域认证的方法来避免恶意的路由攻 ...
- jar工具常用命令
参考链接:https://www.ibm.com/developerworks/cn/java/j-jar/index.html
- shell之局域网内脚本检查主机网络通讯(附并发改写)
转至:https://blog.csdn.net/yrx420909/article/details/104355825 需求:写一个脚本,局域网内,把能ping通的IP和不能ping通的IP分类,并 ...
- html实现随机验证码
代码: <!DOCTYPE html> <html> <!-- head --> <head> <title>图片登录验证</titl ...
- 实现按钮跳转&下划线等
按钮点击跳转页面:(在java文件里写) 1 public class MainActivity extends AppCompatActivity { 2 3 private Button mbtn ...
- Linux|常用命令|sed
目录 SED的适用场景 Option Action作用的行范围 Action类型:行的增删改查 增 删 改 查 正则Regular Expression SED的适用场景 SED是Stream EDi ...