题目链接

将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离。

反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\frac{x+y}{2},\frac{x-y}{2})\),则原坐标系中的切比雪夫距离等于新坐标系中的曼哈顿距离。

随便写两个点就可以验证这是对的。

将题目中每个点的坐标\((x,y)\)改为\((\frac{x+y}{2},\frac{x-y}{2})\),然后记\(dis(a,b)=\Delta X+\Delta Y\)表示两个点\(a,b\)间的曼哈顿距离。

枚举每一个点\(x\),则到\(x\)的距离之和为\(Sum=\sum_{i=1}^ndis(i,x)\)。

把\(dis(i,x)\)拆开,即$$\begin{aligned}Sum&=\sum_{i=1}^n\Delta X(i,x)+\Delta Y(i,x)\&=\Delta X(1,x)+\Delta X(2,x)+...+\Delta Y(1,x)+\Delta Y(2,x)...\end{aligned}$$

把每个点按\(x\)或\(y\)排序,枚举点时就可以\(O(1)\)计算\(\Delta X\)或\(\Delta Y\)的变化量了。

当然没必要先把坐标\(x,y\)除以\(2\)。最后把答案除以\(2\)即可。

我否认在刷水题的事实。

//3072kb	264ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5; LL Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Point
{
int x,y,id;
Point(int tid=0,int ty=0,int tx=0) {id=tid, x=tx+ty, y=tx-ty;}
}p[N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
bool cmpx(Point a,Point b)
{
return a.x<b.x;
}
bool cmpy(Point a,Point b)
{
return a.y<b.y;
} int main()
{
int n=read();
for(int i=1; i<=n; ++i) p[i]=Point(i,read(),read()); std::sort(p+1,p+1+n,cmpx);
LL sum=-1ll*(n-1)*p[1].x;
for(int i=2; i<=n; ++i) sum+=p[i].x;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].x-p[i].x);//i*dx-(n-i)*dx std::sort(p+1,p+1+n,cmpy);
sum=-1ll*(n-1)*p[1].y;
for(int i=2; i<=n; ++i) sum+=p[i].y;
for(int i=1; i<=n; ++i)
Ans[p[i].id]+=sum, sum+=(2ll*i-n)*(p[i+1].y-p[i].y); LL ans=1e18;
for(int i=1; i<=n; ++i) ans=std::min(ans,Ans[i]);
printf("%lld\n",ans>>1); return 0;
}

BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)的更多相关文章

  1. BZOJ 3170 [Tjoi2013]松鼠聚会

    题解:切比雪夫距离转化为曼哈顿距离 枚举源点,横纵坐标互不影响,分开考虑,前缀和优化 横纵分开考虑是一种解题思路 #include<iostream> #include<cstdio ...

  2. BZOJ - 3170: 松鼠聚会 (切比雪夫转曼哈顿距离)

    pro:  有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离.0&l ...

  3. BZOJ3170: [Tjoi2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 803[Submit][Status][Discuss] Descripti ...

  4. BZOJ3170 [Tjoi2013]松鼠聚会 切比雪夫距离 - 曼哈顿距离 - 前缀和

    BZOJ3170 题意: 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最 ...

  5. Bzoj3170: [Tjoi2013]松鼠聚会 (切比雪夫距离)

    题目链接 显然,题目要求我们求切比雪夫距离,不会的可以去看一下attack的博客. 考虑枚举所有的点 转换为曼哈顿距离后. 那么对于这个点的路程和是. \[\sum_{i=1}^n | x_i - x ...

  6. 3170: [Tjoi2013]松鼠聚会

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1804  Solved: 968[Submit][Status][Discuss] Descript ...

  7. 【bzoj3170】[Tjoi2013]松鼠聚会

    3170: [Tjoi2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1670  Solved: 885[Submit][Statu ...

  8. BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)

    题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...

  9. BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和

    BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和 题意:有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点, ...

随机推荐

  1. HTML添加图像和超链接

    添加图像 <img src="图像的文件地址" alt="加载失败" height="350" width="350&quo ...

  2. js获取url协议、url, 端口号等信息路由信息

    以路径为 http://www.baidu.com  为例 console.log("location:"+window.location.href); >> &quo ...

  3. node.js vue-axios和vue-resource

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Knockout示例:User数据CRUD

    模拟数据user.json. { "page": 0, "rows": 0, "total": 161, "isSuccess&q ...

  5. SpringMVC - 1.快速入门

    1. HelloWorld 步骤: 加入 jar 包 mons-logging-1.1.3.jar spring-aop-4.0.0.RELEASE.jar spring-beans-4.0.0.RE ...

  6. Tomcat模型结构

    一.请求过程 Tomca的两大组件:Connecter和Container Connecter组件 1.Connecter将在某个指定的端口上侦听客户请求,接收浏览器的发过来的 tcp 连接请求,创建 ...

  7. 牛客网练习赛t2(线段树)

    题解: 好像因为他说了 数据范围全部在ll以内 所以直接暴力就可以过了 比较正常是用线段树来维护 洛谷上有道模板题是支持加,乘,区间和 而这题还多了区间平方和的操作 按照那题的操作 我们维护的时候保证 ...

  8. bzoj 5099: [POI2018]Pionek

    题解: 还是比较简单的一道题 考虑现在有一个向量,当且仅当下一个向量与它夹角<90度这个向量的模长才会增加 接下来怎么做呢 如果我们去枚举初始向量,向量方向会随着新增向量而变化 随着不断顺时针的 ...

  9. 【转载】DDD分层架构的三种模式

    引言 在讨论DDD分层架构的模式之前,我们先一起回顾一下DDD和分层架构的相关知识. DDD DDD(Domain Driven Design,领域驱动设计)作为一种软件开发方法,它可以帮助我们设计高 ...

  10. 【AtCoder】AGC031

    A - Colorful Subsequence 答案是 \(\prod_{c = 'a'}^{'z'} (cnt[c] + 1)\) #include <bits/stdc++.h> # ...