『TensorFlow』读书笔记_Word2Vec
由于暂时不会深入接触NLP相关领域,所以本章的内容就不过多涉及了,以后会进行学习,应该。
Word2Vec又称Word Embeddings,中文称为"词向量"、"词嵌入"等。
One_Hot_Encoder
图像和语音天然可以表示为稠密向量,自然语言处理领域在Word2Vec之前都是使用离散符号,如"中国"表示为5178,"北京"表示为3987这样,即One_Hot_Encoder,一个词对应一个向量(向量中一个值为1其余值为0),这使得整篇文章变为一个稀疏矩阵。而在文本分类领域,常使用Bag of Words模型,将文章对应的稀疏矩阵进行合并,比如"中国"出现23次,则5178位置特征值为23这样。
由于One_Hot_Encoder的特征编码是随机的,完全忽视了字词之间可能的关联。而且稀疏向量作为存储格式时,其效率比较低,即我们需要更多的训练数据,另外,稀疏矩阵计算也非常麻烦。
向量空间模型
向量表达可以有效的解决这些问题,向量空间模型会将意思相近的词映射到邻近的位置。向量空间模型在NLP中依赖的假设是Distributional Hypothesis,即相同语境中出现的词其意义也相近。
向量空间模型有两个子类,
- 其一是计数模型,计数模型会统计相邻词出现的频率,然后将之处理为小而稠密的矩阵
- 其二是预测模型,预测模型则是根据一个词相邻的词去推测出这个词,以及其空间向量
Word2Vec就属于一种预测模型,其分为两个模式,
- CBOW模式从缺词的原始语句推测目标词,适用于小型数据
- Skip-Gram利用目标词逆推原始语句,对大型语料库效果很好
预测模型一般是给定前h个词的情况下去最大化目标词的概率,CBOW模型并不需要计算全部词汇表中的可能性,随机选择k个词汇和目标词汇进行计算loss,这个方法由tf.nn.nce_loss()已经实现了。
以一句话为例;“the quick brown fox jumped over the lazy dog”为例,滑窗尺寸为一时映射关系有:【the、brown】->【quick】这样的,而Skip-Gram中相反,我们希望得到的是(quick,the)、(quick,brown)这样的关系。面对随机生成的负样本时,我们希望概率分布在the的位置尽可能的大。
『TensorFlow』读书笔记_Word2Vec的更多相关文章
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
- 『TensorFlow』读书笔记_VGGNet
VGGNet网络介绍 VGG系列结构图, 『cs231n』卷积神经网络工程实践技巧_下 1,全部使用3*3的卷积核和2*2的池化核,通过不断加深网络结构来提升性能. 所有卷积层都是同样大小的filte ...
- 『TensorFlow』读书笔记_ResNet_V2
『PyTorch × TensorFlow』第十七弹_ResNet快速实现 要点 神经网络逐层加深有Degradiation问题,准确率先上升到饱和,再加深会下降,这不是过拟合,是测试集和训练集同时下 ...
- 『TensorFlow』读书笔记_SoftMax分类器
开坑之前 今年3.4月份的时候就买了这本书,同时还买了另外一本更为浅显的书,当时读不懂这本,所以一度以为这本书很一般,前些日子看见知乎有人推荐它,也就拿出来翻翻看,发现写的的确蛮好,只是稍微深一点,当 ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- 『TensorFlow』读书笔记_简单卷积神经网络
如果你可视化CNN的各层级结构,你会发现里面的每一层神经元的激活态都对应了一种特定的信息,越是底层的,就越接近画面的纹理信息,如同物品的材质. 越是上层的,就越接近实际内容(能说出来是个什么东西的那些 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上
完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...
- 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_下
数据读取部分实现 文中采用了tensorflow的从文件直接读取数据的方式,逻辑流程如下, 实现如下, # Author : Hellcat # Time : 2017/12/9 import os ...
- 『TensorFlow』读书笔记_AlexNet
网络结构 创新点 Relu激活函数:效果好于sigmoid,且解决了梯度弥散问题 Dropout层:Alexnet验证了dropout层的效果 重叠的最大池化:此前以平均池化为主,最大池化避免了平均池 ...
随机推荐
- springboot中通过cors协议解决跨域问题
1.对于前后端分离的项目来说,如果前端项目与后端项目部署在两个不同的域下,那么势必会引起跨域问题的出现. 针对跨域问题,我们可能第一个想到的解决方案就是jsonp,并且以前处理跨域问题我基本也是这么处 ...
- java框架之MyBatis(2)-进阶&整合Spring&逆向工程
进阶内容 准备 jdbc.url=jdbc:mysql://192.168.208.192:3306/test?characterEncoding=utf-8 jdbc.driver=com.mysq ...
- 判断np.array里面为空字符串的方法
#多在编译器里尝试新操作 import numpy as np for i range(100): eval1 = {"A": ''"} eval2 = {"A ...
- 变量存储缓存机制 Number (int bool float complex)
# ###变量存储的缓存机制(为了节省空间) #Number (int bool float complex) # (1) int -5~正无穷范围内 var1 = 18 var2 = 18 var1 ...
- sitecore开发入门教程如何获取Sitecore项目的域名
我假设您在<sites>web.config文件的部分中设置了多个站点,并且每个站点都hostName定义了一个属性,例如 <site name="website1&quo ...
- 在 python3.x中安装 Crypto 库
1.安装:直接找过来 whl 安装:链接: https://pan.baidu.com/s/1zXjzchnqc1GgSWT9TjHDaA 提取码: dzbn 复制这段内容后打开百度网盘手机App,操 ...
- The All-purpose Zero (最长公共子序列)
题意:求最长公共子序列,但是有个辅助条件,那就是如果那个值为0,那么他可以更换为任意值. 思路:假设现在只剩下没有0的序列是不是就很好求了?那么我们的想法就是看有没有办法将0往最左端或者最有端移动,显 ...
- 【Spark-core学习之四】 Spark任务提交
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- JavaScript 原型链学习(一)原型对象
在JavaScript中创建的每个函数都有一个prototype(原型)属性,这个属性是一个指针,指向一个对象,而这个对象的用途是包含可以由特定类型的所有的实例共享的属性和方法.如果按照字面意思来理解 ...
- git的基本用法
作业要求来自https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/2097 一:以下是git的基本使用方法: 1:首先先进行账号注册. 2:然 ...