【LOJ#6374】网格(二项式反演,容斥)

题面

LOJ

要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le y\le M_y\),并且不能不走。同时有\(k\)个限制,表示不能同时\(x=y=k_i\),保证所有\(k_i\)都是\(G\)的倍数。求恰好跳了\(R\)步到达的方案数。

题解

如果不存在不能走的点的限制,那么两维可以分开考虑。比如接下来只考虑\(x\)上的问题。

因为存在步长的限制,所以设\(g(i)\)表示至少有\(i\)步超过了步长限制的方案数。

那么可以得到:

\[g(i)={R\choose i}{T_x-i*(M_x+1)+R-1\choose R-1}
\]

即将超过限制的步数直接走\(M_x+1\)步,那么剩下随意分配即可。

那么答案就可以容斥得到

\[Ans=\sum_{i=0}^R (-1)^ig(i)
\]

这个样子如果是在数轴上走显然是正确的,然而在本题中,要求了两维不能同时不走。意味着这个算出来的\(Ans_x*Ans_y\)实际上是至多走了\(R\)步的答案。

那么令\(g(i)\)表示至多走\(i\)步的答案,\(f(i)\)表示恰好走了\(i\)步的答案。

那么就可以得到:$$g(R)=Ans_x*Ans_y=\sum_{i=0}^R{R\choose i}f(i)$$

二项式反演之后得到:

\[f(R)=\sum_{i=0}^R(-1)^{R-i}{R\choose i}g(i)
\]

这样子就解决了没有额外限制的情况,时间复杂度为\(O(R^2)\)。

考虑存在额外限制的情况,设\(g(i)\)表示至少违反了\(i\)条规则的方案数,\(f(i)\)表示恰好。

那么有$$f(0)=\sum_{i=0}R(-1)ig(i)$$

考虑如何计算\(g(i)\),那么记录\(S(x,s)\)表示一共违反了\(x\)条规则,并且他们的步数和为\(s\)的方案数,显然\(s=kG\),所以只需要记录除\(G\)后的结果。而除\(G\)后最多不会超过\(100\)。对于每个\(S(x,s)\),显然一共走了\(s*G\)步,所以剩下的随意走就可以用来更新\(g\)。

也就是$$g(i)=\sum_{j}S(i,j)Calc(T_x-jG,T_y-jG,M_x,M_y,R-i){R\choose i}$$

最后直接计算\(f(0)\)即可。

时间复杂度\(O(???)\),分析不清了,然而跑得飞快。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAX 1100100
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int ans;
int Tx,Ty,Mx,My,R,G,N,NN,K,lim[55];
int jc[MAX],inv[MAX],jv[MAX];
int C(int n,int m){if(n<m||n<0||m<0)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int Calc(int T,int M,int R)
{
int ret=0;
for(int i=0,d=1;i<=R;++i,d=MOD-d)
if(T+R-1-i*(M+1)>=R-1)
add(ret,1ll*d*C(R,i)%MOD*C(T+R-1-i*(M+1),R-1)%MOD);
else break;
return ret;
}
int Calc(int Tx,int Ty,int Mx,int My,int R)
{
int ans=0;
for(int i=0,d=(R&1)?MOD-1:1;i<=R;++i,d=MOD-d)
add(ans,1ll*d*C(R,i)%MOD*Calc(Tx,Mx,i)%MOD*Calc(Ty,My,i)%MOD);
return ans;
}
int S[120][120],g[120];
int main()
{
Tx=read(),Ty=read();Mx=read();My=read();R=read();G=read();
K=read();N=max(Tx,Ty)+R;NN=min(Tx,Ty)/G;
for(int i=1;i<=K;++i)lim[i]=read()/G;
sort(&lim[1],&lim[K+1]);K=unique(&lim[1],&lim[K+1])-lim-1;
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=1;i<=N;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=N;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=N;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
S[0][0]=1;
for(int i=1;i<=R&&i<=NN;++i)
for(int k=1;k<=K;++k)
for(int j=0;j+lim[k]<=NN;++j)
add(S[i][j+lim[k]],S[i-1][j]);
for(int i=0;i<=R&&i<=NN;++i)
for(int j=0;j<=NN;++j)
if(S[i][j])add(g[i],1ll*S[i][j]*Calc(Tx-j*G,Ty-j*G,Mx,My,R-i)%MOD*C(R,i)%MOD);
for(int i=0,d=1;i<=R&&i<=NN;++i,d=MOD-d)add(ans,1ll*d*g[i]%MOD);
printf("%d\n",ans);
return 0;
}

【LOJ#6374】网格(二项式反演,容斥)的更多相关文章

  1. LOJ#6374 网格

    题解: 挺好的一道题 两次容斥+一次二项式反演 首先考虑部分分不存在k的限制 然后我们发现两维之间是互相独立的 下面以x轴为例 然后问题就变成了 $$\sum\limits_{i=1}^{R} {xi ...

  2. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  3. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  4. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  5. [CSP-S模拟测试]:多维网格(组合数学+容斥)

    题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$.     接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数 ...

  6. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

  7. hdu1695(莫比乌斯反演+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...

  8. 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6015  Solved: 2741[Submit] ...

  9. 【莫比乌斯反演+容斥】BZOJ2301-[HAOI2011]Problem b(成为权限狗的第一题纪念!)

    [题目大意] 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. [思路] “怎么又是你系列……”思路 ...

  10. [LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)

    https://www.luogu.org/blog/user50971/solution-p5401 #include<cstdio> #include<algorithm> ...

随机推荐

  1. DeskMini无传统机械键盘与鼠标接口的情况下使用U盘安装系统经验总结

    总结安装纯净版Win7旗舰版系统安装过程所解决的问题要点: 1:UEFI引导启动的实现. 2:使用Dism++实现系统的安装. 3:使用Dism++解决新主板在安装系统过程中不能使用USB键盘和鼠标的 ...

  2. Dell Technology Summit(2018.10.17)

    时间:2018.10.17地点:北京国家会议中心

  3. ubuntu 中iptables

    ubuntu中启动及关闭iptables 在ubuntu中由于不存在 /etc/init.d/iptales文件,所以无法使用service等命令来启动iptables,需要用modprobe命令. ...

  4. npm install xxx --save-dev 与npm install xxx --save 的区别

    正常情况下: 当你为你的模块安装一个依赖模块时 1.你得先安装他们(在模块根目录下npm install module-name) 2.连同版本号手动将他们添加到模块配置文件package.json中 ...

  5. ElasticSearch实践系列(三):探索数据

    前言 经过前两篇文章得实践,我们已经了解了ElasticSearch的基础知识,本篇文章让我来操作一些更真实的数据集.我们可以利用www.json-generator.com/生成如下的文档结构: { ...

  6. Microsoft Office软件自定义安装目录

    Microsoft Office安装时不能手动设置安装目录,本文描述通过修改注册表的方式自定义安装目录 1.同时按下快捷键 win + r 启动运行 2.输入 regedit 打开注册表 3.找到   ...

  7. libmysqlclient.so.16: cannot open shared object file: No such file or directory

    编译安装的mysql5.6.39,安装目录是/usr/local/mysql,启用程序时报错:libmysqlclient.so.16: cannot open shared object file: ...

  8. Jumpserver双机高可用环境部署笔记

    之前在IDC部署了Jumpserver堡垒机环境,作为登陆线上服务器的统一入口.后面运行一段时间后,发现Jumpserver服务器的CPU负载使用率高达80%以上,主要是python程序对CPU的消耗 ...

  9. Linux下性能调试工具运维笔记

    作为一名资深的linux运维工程师,为方便了解和追求服务器的高性能,如cpu.内存.io.网络等等使用情况,要求运维工程师必须要熟练运用一些必要的系统性能调试工具,liunx下提供了众多命令方便查看各 ...

  10. 代码规范与复审2——个人博客作业week

    一.关于编程规范的重要性论证 1.不支持. 1)编程规范有利于自己提高编程效率和编程质量.编码是程序员的职责,一个好的信息技术产品必然有高质量的代码,高质量的代码首先 一点它必须遵守某种编程规范.如果 ...