领导集团问题

考虑对每一个点暴力dpdpdp:fi,jf_{i,j}fi,j​表示iii为根的子树选出来的点集最小值不小于jjj的点集元素个数最大值。

那么显然fi,j=∑max⁡{fv,k≥j}+1f_{i,j}=\sum\max\{f_{v,k\ge j}\}+1fi,j​=∑max{fv,k≥j​}+1

直接上线段树合并来优化就完了。

注意要打懒标记

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=200005,M=8000005;
int n,a[N],rt[N],val[N],sig=0;
vector<int>e[N];
namespace SGT{
	int son[M][2],mx[M],add[M],tot=0;
	inline void pushup(int p){mx[p]=max(mx[son[p][0]],mx[son[p][1]]);}
	inline void pushnow(int p,int v){if(!p)return;mx[p]+=v,add[p]+=v;}
	inline void pushdown(int p){
		if(!add[p]||!p)return;
		pushnow(son[p][0],add[p]),pushnow(son[p][1],add[p]);
		add[p]=0;
	}
	inline void update(int&p,int l,int r,int k,int v){
		if(!p)p=++tot;
		if(l==r){mx[p]=max(v,mx[p])+1;return;}
		pushdown(p);
		int mid=l+r>>1;
		k<=mid?update(son[p][0],l,mid,k,max(v,mx[son[p][1]])):update(son[p][1],mid+1,r,k,v);
		pushup(p);
	}
	inline int merge(int x,int y,int l,int r,int a,int b){
		if(!x||!y)return pushnow(y,a),pushnow(x,b),x+y;
		if(l==r)return mx[x]=max(mx[x],a)+max(mx[y],b),x;
		pushdown(x),pushdown(y);
		int mid=l+r>>1;
		son[x][0]=merge(son[x][0],son[y][0],l,mid,max(a,mx[son[x][1]]),max(b,mx[son[y][1]]));
		son[x][1]=merge(son[x][1],son[y][1],mid+1,r,a,b);
		return pushup(x),x;
	}
}
void dfs(int p){
	for(ri i=0,v;i<e[p].size();++i)dfs(v=e[p][i]),rt[p]=SGT::merge(rt[p],rt[v],1,sig,0,0);
	SGT::update(rt[p],1,sig,a[p],0);
}
int main(){
	n=read();
	for(ri i=1;i<=n;++i)a[i]=read(),val[++sig]=a[i];
	sort(val+1,val+sig+1),sig=unique(val+1,val+sig+1)-val-1;
	for(ri i=1;i<=n;++i)a[i]=lower_bound(val+1,val+sig+1,a[i])-val;
	for(ri i=2;i<=n;++i)e[read()].push_back(i);
	dfs(1);
	cout<<SGT::mx[rt[1]];
	return 0;
}

所罗门王的宝藏

考虑O(Tn2)O(Tn^2)O(Tn2)的枚举算法。

我们设cic_ici​表示第iii行的增量,lil_ili​表示第iii列的增量,如果存在两个点(x,y,w1),(x,z,w2)(x,y,w_1),(x,z,w_2)(x,y,w1​),(x,z,w2​),那么ly−lz=w1−w2l_y-l_z=w_1-w_2ly​−lz​=w1​−w2​,同理如果存在两个点(x,y,w1),(z,y,w2)(x,y,w_1),(z,y,w_2)(x,y,w1​),(z,y,w2​),那么cx−cz=w1−w2c_x-c_z=w_1-w_2cx​−cz​=w1​−w2​,这样对于每一个点更新一下任意两列的增量判断是否冲突即可。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int N=1005;
inline int read(){
	int ans=0;
	bool f=1;
	char ch=getchar();
	while(!isdigit(ch))f^=ch=='-',ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return f?ans:-ans;
}
int a[N][N],n,m,k,detc[N][N],detl[N][N],X[N],Y[N],C[N];
bool vis[N][N],visc[N][N],visl[N][N];
int main(){
	for(ri tt=read();tt;--tt){
		n=read(),m=read(),k=read();
		for(ri i=1;i<=n;++i)for(ri j=1;j<=m;++j)vis[i][j]=visc[i][j]=visl[i][j]=0;
		for(ri i=1,x,y,c,det;i<=k;++i){
			x=read(),y=read(),c=read();
			X[i]=x,Y[i]=y,C[i]=c;
			if(vis[x][y]&&(a[x][y]^c)){puts("No");goto XXX;}
			vis[x][y]=1,a[x][y]=c;
			for(ri j=1,mn,mx;j<i;++j){
				det=c-a[X[j]][Y[j]];
				if(Y[i]==Y[j]){
					mn=min(X[i],X[j]),mx=max(X[i],X[j]);
					if(X[i]>X[j])det*=-1;
					if(visc[mn][mx]&&detc[mn][mx]!=det){puts("No");goto XXX;}
					visc[mn][mx]=1,detc[mn][mx]=det;
					if(X[i]>X[j])det*=-1;
				}
				if(X[i]==X[j]){
					mn=min(Y[i],Y[j]),mx=max(Y[i],Y[j]);
					if(Y[i]>Y[j])det*=-1;
					if(visl[mn][mx]&&detl[mn][mx]!=det){puts("No");goto XXX;}
					visl[mn][mx]=1,detl[mn][mx]=det;
					if(Y[i]>Y[j])det*=-1;
				}
			}
		}
		puts("Yes");
		XXX:;
	}
	return 0;
}

邮递员问题

咕咕咕

FJOI2018 部分题解的更多相关文章

  1. 「题解报告」P4577 [FJOI2018]领导集团问题

    题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降 ...

  2. 洛谷4578 & LOJ2520:[FJOI2018]所罗门王的宝藏——题解

    https://www.luogu.org/problemnew/show/P4578 https://loj.ac/problem/2520 有点水的. 先转换成图论模型,即每个绿宝石,横坐标向纵坐 ...

  3. 题解【[FJOI2018]所罗门王的宝藏】

    本题解同步于luogu emmm切了近年省选题来写题解啦qwq 该题较其他省选题较水吧(否则我再怎么做的出来 思路是图论做法,做法上楼上大佬已经讲的很清楚了,我来谈谈代码实现上的一些细节 \[\tex ...

  4. 题解-FJOI2018 领导集团问题

    题面 FJOI2018 领导集团问题 给一棵树 \(T(|T|=n)\),每个点有个权值 \(w_i\),从中选出一个子点集 \(P=\{x\in {\rm node}|x\in T\}\),使得 \ ...

  5. 洛谷4577 & LOJ2521:[FJOI2018]领导集团问题——题解

    https://www.luogu.org/problemnew/show/P4577 https://loj.ac/problem/2521 参考:https://www.luogu.org/blo ...

  6. 【BZOJ5471】[FJOI2018]邮递员问题(动态规划)

    [BZOJ5471][FJOI2018]邮递员问题(动态规划) 题面 BZOJ 洛谷 给定平面上若干个点,保证这些点在两条平行线上,给定起点终点,求从起点出发,遍历所有点后到达终点的最短路径长度. 题 ...

  7. 【BZOJ5470】[FJOI2018]所罗门王的宝藏()

    [BZOJ5470][FJOI2018]所罗门王的宝藏() 题面 BZOJ 洛谷 有\(n+m\)个变量,给定\(k\)组限制,每次告诉你\(a_i+b_j=c_k\),问是否有可行解. 题解 一道很 ...

  8. 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)

    [BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...

  9. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

随机推荐

  1. iOS 解压Assets.car文件

    查看Assets.xcassets打包ipa之后Assets.car的图片资源 不经常使用 记录一份:原文地址http://www.jianshu.com/p/a5dd75102467 cartool ...

  2. firefox修改语言

    下面咱们就可以开始更改设置来让咱们安装好的语言成为默认的语言. 首先在空窗口里输入以下地址:about:config,进入设置页面. 2 请大家定位到general.useragent.locale这 ...

  3. C语言数据结构基础学习笔记——栈和队列

    之前我们学过了普通的线性表,接下来我们来了解一下两种特殊的线性表——栈和队列. 栈是只允许在一端进行插入或删除的线性表. 栈的顺序存储结构也叫作顺序栈,对于栈顶指针top,当栈为空栈时,top=-1: ...

  4. springboot学习目录

    1.spring boot 简单示例 一个简单的springboot 例子  https://www.cnblogs.com/shoshana-kong/p/9641696.html 2. sprin ...

  5. JS stringObject.Match()

    JavaScript match() 方法 JavaScript String 对象 定义和用法 match() 方法可在字符串内检索指定的值,或找到一个或多个正则表达式的匹配. 该方法类似 inde ...

  6. 【亲测】解决虚拟机CentOS7联网ping不通相关问题(通俗易懂)

    对于是使用windows操作系统的小伙伴来说(mac用户忽略),要学习一些技术可能需要使用Linux系统,自然就需要使用虚拟机安装Linux,当然现在很多主流的学习网站上的教程都会提供老师配置好的虚拟 ...

  7. JavaScript 下拉框 左边添加至右边

    关于如何实现右边下拉框中选项的排序一时没有好的解决方法,等想到了回来补充 <!DOCTYPE html> <html> <head> <meta charse ...

  8. solr搜索

    安装过程: 原料:solr-4.10.3.tgz.tgz 1.1.1 安装步骤 单独一台虚拟机先全部删除:根目录:rm * -rf             cd /usr/local   \  rm ...

  9. <记录> curl 封装函数

    1. POST请求 参数1 : 请求地址 参数2 : 数组形式的参数 /** * @param string $url post请求地址 * @param array $params * @retur ...

  10. HTML5-canvas1.0

    HTML5 <canvas> 元素用于图形的绘制,通过脚本 (通常是JavaScript)来完成.<canvas> 标签只是图形容器,您必须使用脚本来绘制图形.你可以通过多种方 ...