传送门


首先一个不知道怎么证的结论:任意点的\(H\)只会是\(0\)或\(1\)

那么可以发现原题的本质就是一个最小割,左上角为\(S\),右下角为\(T\),被割开的两个部分就是\(H=0\)与\(H=1\)的部分

直接上Dinic似乎有90pts

然后可以发现原图是一个经典的平面图

于是将平面图最小割转化成对偶图最短路模型,然后堆优化Dijkstra即可。

关于平面图最小割转化为对偶图最短路可以看这个

#include<bits/stdc++.h>
#define id(i , j) (((i) - 1) * N + (j))
#define INF 0x3f3f3f3f
#define st first
#define nd second
#define PII pair < int , int >
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = (a << 3) + (a << 1) + (c ^ '0');
c = getchar();
}
return f ? -a : a;
} const int MAXN = 255010 , MAXM = 2050010;
struct Edge{
int end , upEd , w;
}Ed[MAXM];
int head[MAXN] , dis[MAXN];
int N , S , T , cntEd = 1;
priority_queue < PII > q; inline void addEd(int a , int b , int c){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
Ed[cntEd].w = c;
head[a] = cntEd;
} inline void Dijk(){
memset(dis , 0x3f , sizeof(dis));
dis[S] = 0;
q.push(PII(0 , S));
while(!q.empty()){
PII t = q.top();
q.pop();
if(-t.st > dis[t.nd])
continue;
if(t.nd == T)
return;
for(int i = head[t.nd] ; i ; i = Ed[i].upEd)
if(dis[Ed[i].end] > dis[t.nd] + Ed[i].w){
dis[Ed[i].end] = dis[t.nd] + Ed[i].w;
q.push(PII(-dis[Ed[i].end] , Ed[i].end));
}
}
} void input(){
N = read();
T = id(N , N) + 1;
for(int i = 0 ; i <= N ; ++i)
for(int j = 1 ; j <= N ; ++j){
int k = read();
if(i == 0)
addEd(S , id(i + 1 , j) , k);
else
if(i == N)
addEd(id(i , j) , T , k);
else
addEd(id(i , j) , id(i + 1 , j) , k);
}
for(int i = 1 ; i <= N ; ++i)
for(int j = 0 ; j <= N ; ++j){
int k = read();
if(j == 0)
addEd(id(i , j + 1) , T , k);
else
if(j == N)
addEd(S , id(i , j) , k);
else
addEd(id(i , j + 1) , id(i , j) , k);
}
for(int i = 0 ; i <= N ; ++i)
for(int j = 1 ; j <= N ; ++j){
int k = read();
if(i && i != N)
addEd(id(i + 1 , j) , id(i , j) , k);
}
for(int i = 1 ; i <= N ; ++i)
for(int j = 0 ; j <= N ; ++j){
int k = read();
if(j && j != N)
addEd(id(i , j) , id(i , j + 1) , k);
}
} void work(){
Dijk();
cout << dis[T];
} int main(){
#ifndef ONLINE_JUDGE
freopen("in" , "r" , stdin);
//freopen("out" , "w" , stdout);
#endif
input();
work();
return 0;
}

Luogu2046 NOI2010 海拔 平面图、最小割、最短路的更多相关文章

  1. Vijos1734 NOI2010 海拔 平面图最小割

    建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring& ...

  2. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  3. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  4. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  5. bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...

  6. BZOJ 2007 海拔(平面图最小割-最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...

  7. 洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)

    传送门 不明白为什么大佬们一眼就看出这是最小割…… 所以总而言之这就是一个最小割我也不知道为什么 然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可 至于建图……请看代码我实在无能为 ...

  8. bzoj 2007: [Noi2010]海拔【最小割+dijskstra】

    上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...

  9. 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)

    [BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...

随机推荐

  1. Android FileUtils 文件操作类

    系统路径 Context.getPackageName(); // 用于获取APP的所在包目录 Context.getPackageCodePath(); //来获得当前应用程序对应的apk文件的路径 ...

  2. Node 编码规范(优秀是一种习惯)

    编码规范 空格与格式 1. 缩进 采用2个空格缩进,而不是tab缩进. 空格在编辑器中与字符是等宽的,而tab可能因编辑器的设置不同.2个空格会让代码看起来更紧凑.明快. 2. 变量声明 永远用var ...

  3. [20171113]修改表结构删除列相关问题2.txt

    [20171113]修改表结构删除列相关问题2.txt --//测试看看修改表结构删除列产生的redo向量,对这些操作细节不了解,分析redo看看. 1.环境:SCOTT@book> @ &am ...

  4. Ext.net 3.1学习

    主页面前台代码: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="MainF ...

  5. MySQL5.7 GTID学习笔记,[MySQL 5.6] GTID实现、运维变化及存在的bug

      GTID(global transaction identifier)是对于一个已提交事务的全局唯一编号,前一部分是server_uuid,后面一部分是执行事务的唯一标志,通常是自增的. 下表整理 ...

  6. git撤销本地提交但未push的记录

    ### git撤销本地提交但未push的记录 前言:有时候本地执行commit命令或者cherry-pick命令后发现提交了不需要提交的东西,就需要把已提交的commit记录撤销下来,简单做下记录 撤 ...

  7. IDEA 编译 Jmeter 5.0(二次开发)

    windows10 操作系统,jdk1.8,Intellij IDEA 2018,jmeter5.0 1.下载 http://jmeter.apache.org/download_jmeter.cgi ...

  8. MySQL面试题之为什么要为innodb表设置自增列做主键?

    为什么要为innodb表设置自增列做主键? 1.使用自增列做主键,写入顺序是自增的,和B+数叶子节点分裂顺序一致 2.表不指定自增列做主键,同时也没有可以被选为主键的唯一索引,InnoDB就会选择内置 ...

  9. java 操作elasticsearch之搭建测试项目环境

    在创建项目之前请确认maven是否安装好,在此我是以环境都搭建好的情况下进行示范,现在以eclipse开发工具为例,具体操作如下: 1.创建maven项目 File - new -other 2.在p ...

  10. Appium1.9.1 部署及结果检验

    1.官网下载最新的 appium 2.点击 Download Appium 3.选择适用于自己操作系统的版本,我的是 windows版本,就选择如下红圈起的 4.点击安装,一直点 下一步 直到提示安装 ...